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Abstract

Throughout history, handwriting has been the primary means of recording information
that is persevered across both time and space. With the coming of the electronic docu-
ment era, we are challenged with making an enormous amount of handwritten documents
available for electronic access. Though many handwritten documents contain only hand-
writing, now, more are mixed with printed text, noise, and background patterns. The
mixture of handwriting with other components presents a great challenge for making an
original document electronically accessible.

Many handwritten documents come together with a special background pattern, rule
lines, which are printed on the paper to guide writing. After digitization, rule lines
will touch text and cause problems for further document image analysis if they are not
detected and removed. In this dissertation, we present a rule line detection algorithm
based on hidden Markov model (HMM) decoding, achieving both high detection accuracy
and a low false alarm rate. After detection, line removal is performed by line width
thresholding.

Handwriting often mixes with printed text, such as signatures and annotations on a
business letter. Handwriting in a printed document often indicates corrections, additions,
or other supplemental information that should be treated differently from the main con-
tent. The data set we are processing is noisy, which makes the problem more challenging.
In this dissertation, we first segment the document at a suitable level, and then classify
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each segmented block as machine printed text, handwriting, or noise. Markov random
field (MRF) based post-processing is exploited to refine the classification results.

The identified handwriting may be further analyzed. In this dissertation, we propose
a novel point-pattern based handwriting matching technique and apply it for handwriting
synthesis and retrieval. We formulate point matching as an optimization problem trying
to preserve the local neighborhood structures. After establishing the correspondence
between two handwriting samples, we warp one sample toward the other using the thin
plate spline (TPS) deformation model to synthesize new handwriting samples. We also
apply our matching algorithm for handwriting retrieval since it is much easier to define
robust features based on the matching results.
Keywords: Handwritten Document Analysis, Rule Line Detection, Handwriting Match-
ing, Shape Matching, Handwriting Synthesis, Handwriting Retrieval
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1 Introduction

Handwriting was developed as a means to expand human memory and to facilitate com-
munication. It has changed tremendously over time when new writing tools are invented.
The latest change is, that with the acceptance of new technologies such as personal dig-
ital assistants (PDAs) and cellular phones, handwriting can be collected on-line without
losing temporal information, which opens a great opportunity for the analysis of hand-
writing, such as handwriting recognition and signature verification. New technologies
also challenge the persistence of handwriting. For example, the oldest books are hand-
copied. However, the printing press and typewriters opened up the world of formatted
documents and made scriptoria obsolete. Almost all books in the past several centuries
have been machine printed. Recently, computer and communication technologies such as
word processors, fax machines, and e-mails provide new ways to expand human memory
as well as facilitate communication. In this perspective, one may ask: Will handwriting
be threatened with extinction?

All these inventions have led to the fine-tuning and reinterpreting of handwriting.
With the increase of literacy, more and more people learn to read and write. As a
general rule, as the length of the handwritten message decreases, the number of people
using handwriting increases [1]. Widespread acceptance of digital computers seemingly
challenges the future of handwriting. However in numerous situations, pen and paper
provides more convenience than a keyboard. For example, most students still do not type
lecture notes on a notebook computer. They record language, equations, and graphs with
a pen. Many people still prefer to keep a hard copy of documents, even when electronic
versions are available. They make annotations on a document when they are reading.
Also, handwriting is demanded by law such as signatures on legal documents. This
brings a new challenge to process such documents where handwritten annotations mix
with machine printed contents. Since the segmentation and recognition techniques for
machine printed text and handwriting are very different, different contents should be
identified before further processing.

Documents are the result of a set of physical processes and conditions, and the result-
ing document can be viewed as consisting of layers, such as handwriting, machine printed
text, background pattern, figures, tables, and/or noise. Fig. 1a shows how several layers
combine to generate a document. Not all layers are present in a single document. The
dashed arrows in the figure mean that the corresponding components are missed in this
example. Document analysis reverses these processes to segment a document into layers
with different physical and semantic properties. This procedure is shown in Fig. 1b.
Since the 1960s, much research on document processing has been done based on optical
character recognition (OCR). A more general study of document analysis, such as page
(or zone) segmentation, zone classification, and table detection, began in early 1980s.
After more than two decades of research, automatic machine printed text segmentation
and recognition for clean documents can be viewed as a solved problem with commercial
products on the market. However, much work needs to be done for handwriting, such
as separating handwriting from machine printed text, segmentation and recognition of
handwriting.

The study of handwriting covers a broad field, dealing with numerous aspects of this
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Figure 1: (a) A document generation model. (b) A document image analysis model.
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complex task. It involves research concepts from several disciplines: experimental psy-
chology [2], computer science [3], education [4], and forensic document examination [5].
For computer processing of handwriting there are several types of analysis, recognition,
and interpretation associated with it. Handwriting recognition transforms the spatial
form of graphical marks into symbolic representation. Signature identification deter-
mines the author of a sample from a set of individuals. Signature verification determines
whether the signature belongs to a given person.

This dissertation presents our approach to identifying the handwriting layer in a
document image from other layers such as background patterns, noise, and machine
printed text. After handwriting identification, we propose an approach to handwriting
matching that can be applied for handwriting synthesis and retrieval.

1.1 Rule Line Detection

Many handwritten documents come together with a special background pattern: rule
lines. These rule lines are printed on the paper to guide writing. After digitization
they will, however, touch text and cause problems for further document analysis such as
segmentation and recognition. These lines must be detected and removed before the text
is fed to an optical character recognition (OCR) engine. These rule lines may appear
severely broken since they are thin and printed with a light color. Many line detection
algorithms have been proposed in the literature [6–11]. They work well on relatively
clean documents with solid or mildly broken lines, but performance will significantly
deteriorates if lines are severely broken because of low image quality or if they mix,
touch, and overlap with text. It is difficult, if not impossible, to reliably detect these lines
individually. Another challenge involves character strokes, which may lie on the same
line, causing a high false alarm rate. If the false alarm lines are removed, character strokes
may be removed erroneously. A line detection algorithm with both a high accuracy and
a low false alarm rate should be developed for severely broken rule lines.

To handle these problems, the context is often required to refine the initial detec-
tion. For example, in form processing most form cells are rectangular. In known form
processing the number of lines and the gaps among these lines can be used as a priori
knowledge and stored as references in form templates. These ideas have been presented
in previous work to improve detection accuracy and reduce false alarms [11–14]. But the
usage of a priori knowledge in the above applications is ad hoc and lacks a systematic
representation.

In this dissertation, we present a rule line detection algorithm based on hidden Markov
model (HMM) decoding. After skew estimation and correction, we perform a horizontal
projection. An HMM model is used to model the projection profile, and the positions of
all rule lines are detected simultaneously after HMM decoding with the Viterbi algorithm.
Experiments on a real data set show that our algorithm achieves both a high detection
accuracy and a low false alarm rate. After detection, lines are removed by line width
thresholding.
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1.2 Handwriting Identification in Noisy Documents

Handwriting often mixes with machine printed text. Handwriting in a machine printed
document often indicates corrections, additions, or other supplemental information that
should be treated differently from the main content. The segmentation and recognition
techniques required for machine printed and handwritten text differ significantly. There-
fore, identification of handwriting from machine printed text is crucial for the following
document image analysis.

The data set we are processing is noisy, which makes the problem more challenging.
Large (e.g., marginal black strips) and small noise components (e.g., pepper-and-salt
noise) can be removed reliably with some simple rules [15, 16]. It is, however, hard
to discriminate noise from compatible sized text. In this dissertation, we treat noise
as a distinguished class. We first segment the document at a suitable level, and each
segmented block is classified into machine printed text, handwriting, or noise.

Some work has been done on handwriting/machine printed text identification. The
classification is typically performed at the text line [17–20], word [21], or character
level [22, 23]. Special consideration must be given to the size of the region being seg-
mented before we can perform any classification. The smallest unit used for classification
is called the pattern unit. If the unit is too small, the information contained in it may not
be sufficient for classification; if it is too large, however, different types of components
may be mixed in the same region due to segmentation errors. In previous work, we con-
ducted a performance evaluation for the accuracy of machine printed text/handwriting
distinguish at the character, word, and zone levels, and showed that a reliable classifica-
tion can be achieved at the word level [23]. Several features, such as Gabor filter features,
run-length histogram features, crossing counts histogram features, and texture features,
are extracted to identify each segmented block into machine printed text, handwriting,
or noise.

Several classifiers, such as the Fisher linear discriminant classifier, the k-nearest neigh-
bor (k-NN) classifier, and the support vector machine (SVM) classifier, are tested in our
comparison experiments. They have similar performance with reasonable accuracy. If
the machine printed text block is too small (such as words with less than 3 characters),
it is likely to be classified as noise. Some noise blocks are classified as handwriting due to
the overlapping in the feature space of these two classes. Machine printed text, handwrit-
ing, and noise exhibit different patterns of geometric relationships. For example, printed
words often form horizontal (or vertical) text lines, while noise blocks tend to overlap
each other. Markov random field (MRF) is used to model such geometric relationships to
refine the classification results. Experiments show MRF is effective in modeling the ge-
ometric dependency of neighboring components, about half of the mis-classifications are
corrected after post-processing. After identification, noise can be removed from the doc-
ument, which enhances a degraded document. Machine printed text can be sent for zone
segmentation or recognition with any off-the-shelf OCR package. Identified handwriting
can be sent for further analysis, such as recognition, retrieval, signature verification or
identification.
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1.3 Handwriting Matching, Synthesis, and Retrieval

The identified handwriting may be sent for further analysis. In this dissertation, we
propose a novel handwriting matching technique and apply it for handwriting synthesis
and retrieval. We study handwriting matching in a broader context of nonrigid shape
matching using a set of points uniformly sampled from the handwriting skeleton. For
nonrigid shapes, most neighboring points cannot move independently under deformation
due to physical constraints. Therefore, though the absolute distance between two points
may change significantly, the neighborhood of a point is well preserved in general. Based
on this observation, we formulate point matching as an optimization problem to preserve
local neighborhood structures during matching. Our formulation has a simple graph
matching interpretation, where each point is a node in the graph, and two nodes are
connected by an edge if they are neighbors. The optimal match between two graphs is
the one that maximizes the number of matched edges (i.e., the number of neighborhood
relations). The shape context distance is used to initialize the graph matching, followed
by relaxation labeling for refinement. Experiments demonstrate the effectiveness of our
approach: it outperforms the shape context [24] and TPS-RPM [25] algorithms under
nonrigid deformation and noise on a public data set.

The performance of a statistical pattern recognition system depends heavily on the
size and quality of the training set. Although it is easy to prepare samples of machine
printed text, doing so is expensive for handwriting. Synthesized data can be used as a
supplement. The key problem of handwriting synthesis is generating samples that look
natural. Otherwise, arbitrarily synthesized samples cannot improve (if not deteriorate)
the performance of the system trained on them. Although handwriting samples vary
greatly in respect to size, rotation, and stroke width, shape is generally used to categorize
them into different classes. Since nonrigid deformation of handwriting is large, we argue
that a synthesis algorithm should learn the shape deformation characteristics from real
handwriting samples. It is reasonable to assume that the shape space of handwriting
with the same content (e.g., the handwriting samples of the letter ‘a’) is continuous. For
characters with several different writing glyphs, such as number ‘7,’ we may need to do
clustering analysis to segment the shape space into multiple continuous sub-space. Given
two handwriting samples close in the shape space, an interpolation between them is likely
to lie inside the shape space too (this is guaranteed if the shape space is convex). That
means, given two real similar handwriting samples, it is reasonable to assume some person
may write with a shape between them (i.e., with similar but less degree of deformation).
In this dissertation, we propose an example-based handwriting synthesis approach using
two training samples. We use our handwriting matching algorithm to establish the
correspondence between two handwriting samples. After handwriting matching, we warp
one sample toward the other using the thin plate spline (TPS) deformation model. By
adjusting the regularization parameter of the TPS deformation model, we can control
the amount of nonrigid deformation in synthesis.

Another application of handwriting matching is handwriting retrieval. Recently,
shape context [24] was proposed as an effective tool for shape recognition and retrieval.
In this approach, the point correspondence is estimated, and similarity measures are de-
fined based on the matching result for shape retrieval. By replacing the original shape
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matching method with our more robust approach, we achieve moderate improvement.
To further improve the accuracy, we propose new similarity measures, such as a mea-
sure based on the affine transformation, registration residual errors, and outlier ratio
estimated by the matching algorithm. Using more similarity measures will significantly
improve the retrieval accuracy. A more effective way to improve accuracy is to use multi-
ple query samples. We propose a simple but effective way to combine the retrieval results
using multiple query instances.

1.4 Organization of the Dissertation

This dissertation is organized as following: Rule line detection and removal is described
in detail in the next chapter. Our model-based line detection algorithm is not limited to
handwriting document analysis. In Chapter 3, we apply it for known form processing.
In Chapter 4, we present our approach to identify handwriting and machine printed text
in noisy document images. Our handwriting matching approach is described in Chap-
ter 5. We discuss the application of handwriting matching to handwriting synthesis and
handwriting retrieval in Chapters 6 and 7, respectively. This dissertation concludes with
a brief summary of our contributions, and some discussions of the remaining problems.
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2 Rule Line Detection

2.1 Introduction

Many handwritten documents come with a special background pattern, rule lines, as
shown in Fig. 2a. It is important that these lines are detected and removed before the
text goes to an optical character recognition (OCR) engine. In this chapter, we focus on
rule line detection.

Many line detection algorithms have been proposed in the literature [6–11]. They work
well on relatively clean documents with solid or mildly broken lines, but the performance
will deteriorate significantly if lines are severely broken due to the low image quality, or
if they mix, touch, and overlap with text. Fig. 2b shows the line detection results for a
rule-lined document using the directional singly-connected chain (DSCC) method [11].
We can see only a few lines are partially detected due to severe brokenness. It is very
difficult, if not impossible, to reliably detect these lines individually.

In this dissertation, we propose a model-based method which incorporates context to
detect parallel lines optimally and systematically. Under the model, lines are detected by
a hidden Markov model (HMM) decoding process, which can determine the positions of
all lines simultaneously. Rather than detecting lines directly on original images [7,10,11],
we use a DSCC-based scheme to filter text as a preprocessing step so the interference
with text can be minimized. We then use a coarse-to-fine approach to estimate the skew
angle of the document. After deskewing the document, we perform horizontal vertical
projection. Rather than treating the peaks in the projection profile as the positions [7,10],
we model the projection profile with an HMM model so the context among these lines
can be incorporated. The Viterbi algorithm is then used to search the optimal positions
of these lines simultaneously from the projection profile. The experimental results show
our method is robust. It can detect lines with a high accuracy and a low false alarm
rate in degraded documents. Fig. 2c shows the line detection result using the proposed
model-based approach. Compared to Fig. 2b, our detection result is much better. Our
model-based parallel line detection algorithm is flexible; therefore, it can be easily adapted
for different applications. We will demonstrate it on two applications: rule line detection
and known form processing. In this chapter we focus on rule line detection, and the
application on known form processing will be discussed in the next chapter.

After line detection, we would like to remove the detected lines without deteriorating
the text. Many line removal algorithms have been developed in the literature, and can
be classified into two categories. One kind of approach tries to remove lines completely,
then uses local property of overlapping areas, such as stroke direction and connection, to
restore the missing parts of strokes [8, 26–28]. One problem of these approaches is that,
after line removal, a large quantity of useful information is lost, making stroke recovery
difficult. The other kind of approach analyzes character-line overlapping areas, then
removes pixels only belonging to lines, while preserving those belonging to characters [29–
32]. During my graduate work at Tsinghua University in China, I proposed a line width
thresholding based approach [33, 34]. The line width is preserved well if no character-
line touching happens, but increases noticeably in overlapping areas. This property is
used for line removal. We first decompose a line to an array of run-lengths of black
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(a) (b) (c) (d)

Figure 2: Rule line detection and removal. (a) A rule-lined document; (b) Line detection
results using the DSCC method [11]; (c) Line detection results using our model based
approach; (d) Cleaned image after line removal (the black marginal strips are removed
too).

pixels, predicated to the running direction of the line. If a run-length is shorter than a
threshold, it is removed; otherwise, it is preserved. An adaptive scheme is used to set
a small threshold for the area close to text, and a large one for the area far apart from
text. Fig. 2d shows the line removal result. As we can see, this approach works well
for most character-line touching cases. In this chapter, we focus on rule line detection,
please refer to our publication [33] for details of our line removal approach.

The remainder of this chapter is organized as follows. In Section 2.2, we briefly review
previous work on line detection with emphasis on the usage of prior knowledge. Since
text may touch or overlap with lines, removing text before line detection will significantly
increase the robustness of our line detection algorithm. In Section 2.3, we present our text
filtering method. Our general model-based parallel line detection algorithm is described
in detail in Section 2.4, which can be tailored for rule line detection (Section 2.5) or
known form processing (discussed in the next chapter). We demonstrate the robustness
of our approach with experiments in Section 2.6, and the chapter concludes in Section 2.7
with a discussion of future work.

2.2 Related Work on Line Detection

Line detection is widely used in form detection and interpretation [8, 10, 11], engineer-
ing graph interpretation [35], bank check/invoice processing [13, 14], and optical music
recognition (OMR) [36]. Among many algorithms proposed in the literature, the Hough
transform method and its variations are widely used [6,37]. The Hough transform method
converts the global pattern detection problem in an image space to a local pattern (ide-
ally a point) detection problem in a transformed parameter space. To detect a straight
line, each black pixel (x, y) in an image space is transformed into a sinusoidal curve in
the Hough parameter space

ρ = xcosθ + ysinθ. (1)

After transformation, collinear points (xi, yi) in the image space intersect at a point (ρ, θ)
in the Hough parameter space. Therefore, a peak in the transformed space provides strong
evidence that a corresponding straight line exists in the image. The Hough transform
method can detect dashed and mildly broken lines. However, it is very time consuming.
To reduce computational costs, a projection method was proposed [7] to detect form
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frame lines by limiting the search orientations since only horizontal and/or vertical lines
usually exist in form documents. The method deskews the document first, then detects
the peaks on the horizontal and vertical projection profiles as lines. It can be viewed as
a special case of the Hough transform method by searching θ only around 0o and 90o.
The method will fail if the projection of a line does not form a peak on the profile when
it mixes with text, the estimated skew angle is not accurate enough, or the lines are too
short or severely broken. Chen and Lee [10] proposed the strip projection method to
alleviate this problem since lines are more likely to form peaks on the projection profile
in a small region. For horizontal line detection, they first divided an image into several
vertical strips of equal width, and then performed horizontal projection in each strip.
The detected collinear line segments in each strip are linked to form the line.

Thinning is another common method to extract lines. It uses an iterative boundary
erosion process to remove outer pixels until only a skeleton of pixel chains remains [38].
It can maintain connectivity, but also tends to create noisy junctions at corners, inter-
sections, and branches. Medial line methods, on the other hand, extract image contours
first. The mid-points of two parallel contour lines then form a medial line [39]. The
methods may miss pairs of contour lines at branches, requiring post-processing to reduce
this distortion [40]. The result of either thinning or medial line method is a chain of
pixels, and a line segment can be detected by approximating the pixel chain. The sparse
pixel vectorization (SPV) algorithm, proposed by Dori et al. [9], does not use contours
to get medial lines. It traces the medial points of consecutive horizontal or vertical pixel
runs until constraints are violated. Each continuous trace represents a bar or an arc.
SPV often achieves better results than other medial line methods, but the medial point
tracking procedure is complicated, and often needs post-processing to refine the results.

Run-lengths are often used as an image component to detect lines. Yu and Jain [8]
proposed a data structure, called block adjacency graph (BAG), to represent an image.
BAG is defined as G(N,E), where N is a set of block nodes and E is a set of edges
indicating the connection between two nodes. Each node is a block which contains
either one or several horizontal run-lengths adjacently connected in the vertical direction
and aligned on both left and right sides within a given tolerance. A line is detected
by searching a connected sub-graph in the BAG with large aspect ratio. Chhabar et
al. [41] presented another run-length-based approach for horizontal line detection. Since
the method is composed of four steps: filter, assemble, silhouette, and threshold, they
named it the FAST algorithm. The algorithm works directly on run-length encoded
images and is very fast. It was later extended to detect lines with any orientation after
implementing an efficient rotation operation on run-length coded images [42]. Recently,
the directional singly-connected chain (DSCC) method was proposed [11]. A DSCC is a
chain of run-lengths which are singly connected. A basic characteristic of a line is that
it runs in only one direction. Run-lengths perpendicular to the direction of a line are
merged into a DSCC. When a junction is encountered, the merging process stops and
a new DSCC generates. Each DSCC represents a line segment, and multiple collinear
DSCCs may be merged into a line, based on pre-defined rules. In the above approaches,
the grouping of run-length into line segments is rule-based. A model-based method,
using the Kalman filter, was proposed [43]. Assuming that a run-length (perpendicular
to the line’s running direction) of constant length moves along a straight line, the Kalman
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filtering technique is used to track the run-length. If the tracking error is larger than a
threshold, it is stopped, and a new tracking begins.

In some applications, horizontal and vertical lines always intersect each other. This
property can be used to develop an efficient algorithm by detecting intersections of hor-
izontal and vertical lines first. The verification of line segments between intersections
complete the algorithm [42,44].

In most of the above approaches, domain specific knowledge is used implicitly or
explicitly. For example, parameters of a line detection algorithm may be tuned to a
specified application. In engineering drawing interpretation, knowing the line type (such
as solid, dotted, or dashed) helps to develop a robust line detection algorithm [45]. In
some forms, most cells are rectangular. This knowledge can be used to improve detection
accuracy and reduce false alarms [11]. In [46], Roach and Tatem demonstrated the
effectiveness of domain specific knowledge in a highly structured domain: handwritten
music score recognition. But the use of the prior knowledge in above applications is ad
hoc and lacks systematic representation.

2.3 Preprocessing

Preprocessing has two purposes: first, we deskew the document so the parallel lines
are oriented horizontally or vertically; second, we filter text strokes to diminish their
intervention in line detection. The skew of a document can be estimated using the
text [47], or using the extracted line segments if lines are available on the document [48].
In our approach, we use a coarse-to-fine line based skew estimation method, which is
similar to [48]. Since skew estimation is a mature technique in document image analysis,
we will not discuss the details in this section. After skew estimation, we can easily rotate
the document to correct the skew. In this section, we focus on text filtering, which is one
of our contributions. We extract directional singly-connected chains (DSCC) first, then
remove DSCCs unlikely to be generated by a line segment because of their shapes.

2.3.1 Definition of DSCC

We define two types of DSCCs: horizontal and vertical, as described in [11]. Take the
horizontal DSCC for example. A horizontal DSCC, Ch, consists of a black pixel run-
length array R1R2 · · ·Rm, where Ri is a vertical run-length with one pixel width

Ri(xi, ysi, yei) =

{

(x, y)

∣

∣

∣

∣

p(x, y) = 1, for x = xi, y ∈ [ysi, yei]
and p(xi, ysi − 1) = p(xi, yei + 1) = 0

}

, (2)

where p(x, y) is the value of pixel (x, y) with 1 representing black pixels, and 0 repre-
senting white pixels; xi, ysi, and yei designate x, starting y, and ending y coordinates
of Ri, respectively. Two neighboring run-lengths Ri and Ri+1 are merged into a DSCC
if they are singly connected in the horizontal direction. As shown in Fig. 3a, the single
connection means that at each side of Ri(1 < i < m), there is one and only one con-
nected run-length. In this example, R1R2 · · ·R7, R11R12R13, R8, R9, R10, R14 and R15

are extracted as DSCCs. The definition of the vertical singly-connected chain, Cv, is
similar.
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(a) (b)

Figure 3: Definition and extraction of horizontal DSCCs. (a) Illustration of horizontal
DSCCs. (b) Extracted DSCCs (represented in gray) where a text stroke crosses a line.

The most important property of a line is the single connection along its running
direction. An ideal line consists of only one DSCC. A real line often consists of multiple
collinear DSCCs. Fig. 3b shows an example of extracted DSCCs (represented in gray)
of a text stroke crossing a line. We can see the line breaks into several line segments
(DSCCs) on the touching area. If the image quality is reasonable, then a line can be
detected by merging DSCCs with similar orientation [11]. In our case, we use it to remove
text and preserve line segments.

2.3.2 Text Filtering

As shown in Fig. 3b, a DSCC can be a text stroke or a line segment. We observed that a
line segment often has a smaller variation from the desired orientation and larger aspect
ratio. We use an ellipse to model the shape of a DSCC, and calculate the orientation θ,
the first and second axes a and b of each DSCC as follows:

µmn =
∑

x

∑

y

(x − x̄)m(y − ȳ)np(x, y) (3)

θ = 0.5tan−1

(

2µ11

µ20 − µ02

)

(4)

a =

√

2[µ20 + µ02 +
√

(µ20 − µ02)2 + 4µ2
11]

µ00

(5)

b =

√

2[µ20 + µ02 −
√

(µ20 − µ02)2 + 4µ2
11]

µ00

(6)

where p(x, y) represents a pixel in the DSCC, x̄ and ȳ are the means of x and y coor-
dinates, and umn is a central moment. For horizontal line detection, we only preserve
those DSCCs with either very small sizes (max{a, b} < T1) or large aspect ratios within
a specified orientation (a/b > T2 and θ ∈ [−45o, 45o]). T1 and T2 are thresholds deter-
mined experimentally. The first condition preserves small DSCCs, which may be parts
of a broken line or the touching areas of lines and text; and the second preserves large
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(a) (b)

(c) (d) (e)

Figure 4: DSCC-based text filtering. (a) and (b) A document image with rule lines and
the corresponding result of text filtering in the horizontal direction. (c) A form document
image. (d) and (e) Results of text filtering in the horizontal and vertical directions of
(c), respectively.

DSCCs, which are likely to be horizontal line segments. For rule line detection, we need
to perform text filtering only in the horizontal direction. Our approach can be extended
for vertical line detection, as discussed in the next chapter on known form processing.
For vertical line detection, similar filtering conditions exist except for the orientation.
Fig. 4 shows examples of text filtering. We can see that most text strokes are filtered
and the line segments are preserved.

2.4 HMM-Based Parallel Line Detection

In the following description, we use horizontal line detection as an example to illustrate
the proposed method. The extension to vertical line detection is straightforward. After
skew correction and text filtering, we perform a horizontal projection and detect lines
on the projection profile. A stochastic model, M(y1, y2, . . . , yN), is proposed for a group
of parallel lines, where N is the number of lines, and yi, i = 1, 2, . . . , N , is the vertical
position of the ith line on the projection profile. The line gap gi between two neighboring
lines i and i + 1 is defined as

gi = yi+1 − yi. (7)

A global image registration method (such as affine transformation or projective trans-
formation) cannot compensate for local distortions introduced in photocopying and scan-
ning. Such local distortions will introduce variations to the vertical line positions yi’s
on the horizontal projection profile. Kanungo and Haralick [49] found that the variation
of the position of a point is as large as four pixels after removing the global projective
deformation. Therefore, the variation of the distance between two points will be within
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the range [-8, +8] pixels, if the variations of two points are independent. Considering the
case that documents may be bent, folded and un-folded, or they may be stored in various
environmental conditions (e.g., hot, cold, dry or humid) for years, the local distortions
in scanned images may be larger. In our experiments, we found the maximum variation
of gi from its mean value can reach up to 11 pixels. It is hard to model the dependency
among the variations of gi’s. As a simplification, in our approach, we do not consider
such dependency. Then, it is easy to show that the line positions yi’s form a Markov
chain under this simplified assumption. As they are not observable directly, an HMM is
more suitable for modeling the projection profile. The line positions can be detected by
decoding the HMM.

2.4.1 Hidden Markov Model

The Markov property of a sequence of events is well studied in the literature [50]. Consider
a system that stays at one of a set of N distinct states, S1, S2, . . . , SN , at any sampling
time t. The system undergoes a change of state according to a set of probabilities
associated with the state during the period between two successive sampling times. For
a Markov chain (the first order), the probability distribution of qt only depends on the
value of the previous state qt−1

P [qt = Skt
|qt−1 = Skt−1

, qt−2 = Skt−2
, . . . , q1 = Sk1

] = P [qt = Skt
|qt−1 = Skt−1

] (8)

If the state transition probability is independent of time t, then the Markov chain is said
to be homogeneous

P [qt = Sj|qt−1 = Si] = aij 1 ≤ i, j ≤ N (9)

We can show that line positions {Yi, i = 1, 2, . . . , N} form a Markov chain, if the
variations in line gaps are independent. We use uppercase characters to represent random
variables (e.g., Yi) and lowercase characters to represent the value of the random variables
(e.g., yi).

Theorem 1: Let Yi, i = 1, 2, . . . , N be line positions, and Gi = Yi+1 − Yi, i =
1, . . . , N − 1 be line gaps. If {Gi} are independent, then {Yi} form a Markov chain.

P (Yi|Y1, Y2, . . . , Yi−1) = P (Yi|Yi−1) (10)

Proof:

P (Yi|Y1, Y2, . . . , Yi−1) = P (Gi−1 + Yi−1|Y1, Y2, . . . , Yi−1)

= P (Gi−1|Y1, Y2, . . . , Yi−1)

= P (Gi−1|G1, G2, . . . , Gi−2, Yi−1) (11)

Since, {Gi} are independent, we have

P (Yi|Y1, Y2, . . . , Yi−1) = P (Gi−1|Yi−1)

= P (Gi−1 + Yi−1|Yi−1)

= P (Yi|Yi−1) (12)
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Therefore, {Yi} form a Markov chain.
In the literature of random process [51], {Yi} is called an independent increment pro-

cess, which includes several well-known random processes, such as the Brownian motion
process and the Poisson process.

In many applications, the actual state sequence is not observable. The resulting model
(which is called a hidden Markov model) is a doubly embedded stochastic process with
an underlying stochastic process that is not observable, but can be inferred only through
another stochastic process that produces the sequence of observations. The elements of
a standard discrete HMM are

1) N , the number of the states in the model.
2) M , the number of distinct observation symbols per state.
3) A = {aij}, the state transition probability matrix.
4) B = {bij}, the probability distribution matrix of the observation symbols.
5) π, the initial state distribution.

HMMs can model some 1-D signals well, and have achieved great success in speech [50]
and handwriting recognition [3].

In our application, we can observe only the projection profile hk

P (Hk = hk|Y1 = y1, . . . , YN = yN) =

{

P (Hk = hk|∃i, k = yi) A line is on k
P (Hk = hk|∀i, k 6= yi) No lines are on k

(13)
Therefore, the projection profile can be modeled with an HMM. A standard HMM is
shown in Fig. 5a, where ST and SB are the states representing top and bottom image
borders, SL,i, i = 1, 2, . . . , N , represents lines, and SG,i, i = 1, 2, . . . , N −1, represents the
gaps between lines i and i + 1.

One weakness of conventional HMMs is modeling of the state duration. The inherent
duration probability distribution pi(d), d = 1, 2, . . . , associated with state SGi

is

pi(d) = (aii)
d−1(1 − aii) (14)

where aii is a self transition probability. The exponential state duration distribution
is inappropriate for our applications. Instead we explicitly model the duration dis-
tributions. The model with explicit state duration is shown in Fig. 5b 1, where the
stochastic property of the model is incorporated into the state duration distributions
PT (d), PB(d), Pi(d), i = 1, 2, . . . , N − 1. For some applications, the quality of the model-
ing is significantly improved when explicit state duration distributions are used [52].

2.4.2 HMM Parameter Estimation

The major drawback of an explicit duration HMM is that it significantly increases compu-
tational costs for model training. With a traditional forward-backward training algorithm
(a type of EM algorithm), the re-estimation problem for a variable duration HMM is more

1It only exactly models lines with one pixel width. To make the model more accurate, alternatively,
one can introduce probability of durations to line states. Fortunately, line width does not vary too
much in most applications. Experiments shows that such inaccuracy in modeling does not deteriorate
its performance noticeably.
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(a)

(b)

Figure 5: HMMs for a projection profile. (a) A standard HMM. (b) An HMM with
explicit state duration.

difficult than that for a standard HMM [50]. Fortunately, in our case, we can directly
derive the HMM parameters from ground-truth since the states explicitly correspond to
image components. Therefore, the forward-backward training algorithm is not needed.
We set duration probabilities of states ST and SB to uniform distribution within a range.
The duration probabilities of states SG,i, i = 1, 2, . . . , N − 1, is estimated directly from
the ground-truth.

The observation comes from the projection profile hk. The large number of obser-
vation symbols would prevent us from estimating the model parameters reliably with
limited training samples. There are two methods to reduce the number of parameters
of the model. One involves modeling the distribution of the observation as a Gaussian
distribution [50], so only the mean and variance of the Gaussian distribution need to
be estimated. For known form processing (discussed in the next chapter), we find the
projections of a line over multiple form instances can be well modeled as a Gaussian dis-
tribution. Another method quantizes the projection profile into several levels. For rule
line detection, the image quality varies significantly among different images. The distri-
bution of the observations does not follow a Gauss distribution. Therefore, we quantize
hk into K levels (K = 5 in our experiments for rule line detection). The probability of
each level is estimated from the ground-truth.

The HMM parameters estimated directly from the ground-truthed data set are not
optimal due to the sparseness of the training data. For example, some entries of the line
gap distribution do not appear or appear only a few times. Parameter sharing, a technique
used in neural networks to train the parameters with limited training samples [53, 54],
is used in our approach. For example, we let non-line states ST , SB, SG,1, . . . , SG,N−1

share the same observation probability distributions since the observations of these states
are the same: the projections of noise and remaining text strokes after filtering. For
rule line detection, we further combine all line states into one state, and all non-line
states into another state, significantly reducing the parameters of the model. For line
gap distribution estimation, we assume the distribution is symmetric around the mean
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value. Therefore, data smoothing techniques, originally proposed in natural language
processing [55], can be used

C ′(ḡi + k) = C ′(ḡi − k) =
C(ḡi + k) + C(ḡi − k)

2
k = 1, 2, . . . (15)

where ḡi is the mean value of line gap Gi, C(k) is the number of instances of Gi with
value k in the training set, and C ′(k) is the smoothed result after imposing symmetric
regularization. Finally, we set the empty entries to the minimal value of all non-zero
entries. Suppose the maximal variation of the line gap Gi is K. For k ∈ [−K,K], the
final smoothed result is

C ′′(ḡi + k) =

{

C ′(ḡi + k) if C ′(ḡi + k) 6= 0
mini∈[−K,K],C′(ḡi+i) 6=0 C ′(ḡi + i) if C ′(ḡi + k) = 0

(16)

C ′′(k) can be converted to probability by normalization.
The ultimate goal of training is to search the optimal HMM parameters to minimize

the line detection error. The estimated parameters from the training data can produce
reasonable results, but they do not minimize the pre-defined line detection error rate.
Generally, the error criterion is a complex function of the model parameters without
a closed-form representation. A direct searching algorithm can be used to solve such
optimization problems. In our case, the simplex search method proposed by Nelder and
Mead [56] is used to minimize the detection error.

2.4.3 HMM Decoding

Given the observation sequence O = hk, k = 1, 2, . . . , T , and the HMM λ, we want to
search an optimal state sequence Q = q1q2 . . . qT to maximize P (Q|O, λ), which is equiva-
lent to maximizing P (Q,O|λ). Normally, the Viterbi algorithm, a dynamic programming
method, is used to decode HMMs. A matrix v with dimension T × (N + 1) is defined
and updated in the Viterbi algorithm, and

v(t, n) = max
q1,q2,...,qt−1

P [q1, q2, . . . , qt = SL,n, h1, h2, . . . , ht|λ] (17)

is the best decoding score at time t, which accounts for the first t observations and ends
in state SL,n. The sequence q1, q2, . . . , qt−1 maximizing the probability in Eq. (17) is the
best decoding result until time t if we decode state qt as the nth line.

Suppose the minimal and maximal state durations of states SG,n are δn− and δn+, and
the durations of ST and SB are uniformly distributed in [0, δT ] and [0, δB], respectively.
The complete procedure of decoding is stated as follows

1. Clear all entries of matrix v.

2. For 1 ≤ i ≤ δT , decode the first i − 1 observations as ST (the top image border)
and observation i as SL,1

v(i, 1) =
1

δT + 1
P (hi|qi = SL,1)

i−1
∏

j=1

P (hj|qj = ST ), (18)
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where P (hi|qi = SL,1) is the probability of observing hi if the system enters state
SL,1 at time i;

∏i−1
j=1 P (hj|qj = ST ) is the probability of observing the first i − 1

observations if the system stays at state ST during the time period from 1 to i− 1;
and 1

δT +1
is the probability of the model staying at ST for i−1 consecutive periods.

3. Set t = 1.

4. For n = 1 to N
For j = δn− to δn+

v′(t + j, n) = v(t, n)Pn(j)P (ht+j|qt+j = SL,n+1)

t+j−1
∏

k=t+1

P (hk|qk = SG,n) (19)

v(t + j, n) = max{v(t + j, n), v′(t + j, n)} (20)

End loop of j
End loop of n
Here Pn(j) is the probability of staying at state SG,n with j consecutive times;
P (ht+j|qt+j = SL,n+1) is the probability of observing observation ht+j if the system
enters SL,n+1 at time t+ j, which corresponds to a new line; and

∏t+j−1
k=t+1 P (hk|qk =

SG,n) is the probability of observing sequence ht+1 to ht+j−1 if the system stays
at state SG,n during this time period, which corresponds to a line gap. Eq. (20)
updates the optimal partial detection result.

5. If t > T − δB, decode the following sequence as the bottom image border.

v′(T,N + 1) = v(t, N)
1

δB + 1

T
∏

k=t+1

P (hk|qk = SB) (21)

v(T,N + 1) = max{v(T,N + 1), v′(T,N + 1)} (22)

6. If t < T , then t = t + 1, and go to step 4.

For each t, the algorithm remembers the best decoding path until time t. After
decoding,

v(T,N + 1) = max
Q

P (Q,O|λ) (23)

is the probability of detecting lines given the model, which can be regarded as detection
confidence. The sequence q1, q2, . . . , qT which achieves v(T,N +1) is the optimal decoding
result.

2.4.4 Polyline Representation

After identifying the vertical position of a line, we then need to detect the left and right
end points by grouping the broken line segments together. For each detected line, those
DSCCs within 10 pixels distance to the detected line are merged [11].
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An ideal straight line can be represented with two parameters a and b as y = a×x+b.
Practically, a real line is represented with points (xi, yi), i = 1, 2, . . . , n. The parameters
a and b can be estimated based on the minimum mean squared error criterion (MMSE)

x̄ =
n
∑

i=1

xi/n,

ȳ =
n
∑

i=1

yi/n,

a =

∑n
i=1(x − x̄)(y − ȳ)
∑n

i=1(x − x̄)2
,

b = ȳ − a × x̄. (24)

For most straight lines, this approximation is good enough. However, due to the
distortions introduced by photocopying and scanning, some lines are cursive and cannot
be well represented by two end points. In this case, a polyline representation is used as
follows:

1. Calculate the average approximation error of a line

δyi = |yi − a × xi − b|, (25)

e =
n
∑

i=1

δyi/n. (26)

2. If e is smaller than the average line width (often two to four pixels), keep it with
two end points representation and exit.

3. Otherwise, split the whole line into two segments from the middle and estimate the
line parameters a and b for each segment respectively, as described in Eq. (24).

4. For each segment, go to step 1 and repeat.

A polyline is described as a sequence of vertices (P1, P2, . . . , Pm). Two or three seg-
ments are sufficient to represent most lines in our following experiments.

2.5 Application to Rule Line Detection

In this section we use the proposed method to detect severely broken rule lines. In
this application, the number of lines is unknown, and the vertical line gaps may vary in
different images due to the different styles used by rule-lined paper or different scanning
resolutions. However, the length of lines and the vertical line gaps are roughly consistent
in the same document image.
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Figure 6: Vertical line gap estimation for rule line detection, based on the auto-correlation
of the projection profile.

Figure 7: A simplified HMM for rule line detection.

2.5.1 Vertical Line Gap Estimation

We need to estimate the average vertical line gap from the input image. Since the line
gaps between neighboring lines are roughly the same, the horizontal projection of rule
lines is a periodic signal (the period is the average vertical line gap ḡ). We use an
auto-correlation-based approach to estimating the period of the projection. The auto-
correlation of a signal x, with n samples x(1), x(2), · · · , x(n), is defined as

R(l) =
n−l
∑

i=1

x(i)x(i + l) l = 0, 1, . . . , n − 1 (27)

The distance between the first two peaks of the auto-correlation is taken as the vertical
line gap, as shown in Fig. 6.

2.5.2 A Simplified Model

In order to reduce the complexity of the model (the number of states and parameters),
we further simplify it by considering the special properties of rule lines. Since the vertical
line gaps and the lengths of rule lines are roughly consistent in the same document image,
we can merge states SG,i, i = 1, 2, . . . , N − 1, into one state SG, and SL,i, i = 1, 2, . . . , N ,
into another state SL. Fig. 7 shows the simplified model. State merging reduces the
number of parameters significantly. Another advantage of such simplification is that we
do not need to know explicitly the number of lines on a document.
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Table 1: Observation probability distribution matrix B estimated from the training set
containing 100 documents
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SL 106 (4.7%) 246 (10.8%) 378 (16.6%) 1,051 (46.2%) 493 (21.7%)
ST , SB , SG 191,086 (98.8%) 2,052 (1.1%) 170 (0.1%) 58 (0.03%) 15 (0.008%)

2.5.3 Parameter Estimation

In our data set, the quality of different images varies significantly as does the quality
of rule lines on the same image. Therefore, we cannot use the Gaussian distribution to
model the projections of rule lines (the Gaussian mixture distributions may be a good
approximation). Instead, we quantize the observation into several levels and estimate the
probability of each quantized level directly from the ground-truthed data set. Peaks on
the projection profile have particular significance for line detection. Therefore, we first
set all non-peaks on the profile to zero, then quantize the peaks on the projection profile
into four levels using the following quantization thresholds: w/16, w/8, and w/4, where
w is the image width. The observation probability distribution matrix B, estimated from
the training set containing 100 documents, is listed in Table 1. We let states ST , SB, and
SG, whose observations are the projection of text or noise, share the same observation
distribution. We observed that (1) due to the severe brokenness, the horizontal projec-
tions of about 80% of rule lines are less than 1/4 of the image width; (2) 4.7% of rule lines
do not form peaks; and (3) the peaks with small heights are more likely formed by text
strokes or noise (2,052 instances) rather than by rule lines (246 instances). Therefore,
we need to use high level contextual information to achieve reasonable detection results
for these severely broken lines.

We set duration probability of states ST and SB to the uniform distribution on [0, ḡ−
1]. The duration probability of state SG is estimated directly from the ground-truth with
the approach described in Section 2.4.2. With all these settings, the rule line detection
accuracy on the training set is about 95.6%. For comparison, the accuracy is only 91.7% if
we use the Gaussian distribution for approximation. Since the parameters estimated from
the training data are not optimal for the ultimate detection error criterion, the simplex
method proposed by Nelder and Mead [56] is used to search the optimal parameter set
which minimizes the detection error. Among the parameters of our model, we optimize
only the observation probability matrix B. Experiments show the detection accuracy
increases to 97.3% on the training set after optimization.

2.5.4 Examples

HMM decoding may detect extra lines on the top or bottom image borders. To reduce the
false alarm rate, we remove lines with less than 50 black pixels. Fig. 2c shows the model-
based line detection result for a rule-lined document. Compared with Fig. 2b, we can see
that, with contextual information, the result is significantly improved. Our model-based
method is robust even when the input images do not follow the model exactly. Fig. 8a
shows an example: two pages are overlapped during scanning. Our algorithm still detects
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(a) (b) (c) (d)

Figure 8: Robust test for rule line detection. The image in (a) has enormous observations
on the projection profile (several lines missed because two pages are overlapped during
scanning). (c) shows a document with enormous line gaps (35 image rows removed
manually in the middle). (b) and (d) show the corresponding line detection results.

all rule lines correctly. In Fig. 8c, we remove 35 rows of the image (about half of the
average vertical line gap of this document). The variation of the line gap is out of the
range allowed by the model. The corresponding detection result is shown in Fig. 8d, with
only one line missed due to the anomalous vertical line gap.

2.6 Experiments

In this section, we present our evaluation metrics, quantitatively evaluate the robustness
of our line detection algorithm, and compare it with several non-model-based algorithms.

2.6.1 Line Detection Evaluation Protocol

Line detection accuracy can be evaluated at the pixel and line levels [57]. At the pixel
level we compare the difference of the pixels between ground-truth and detected lines.
It is straightforward and objective, but ground-truthing at the pixel level is extremely
expensive when lines are broken, distorted, and overlapped with text. Therefore, we
evaluate the algorithm at the line level. Our evaluation metric is based on the Hausdorff
distance. The Hausdorff distance between two point sets is

H(A,B) = max{h(A,B), h(B,A)} (28)

where
h(A,B) = max

a∈A
min
b∈B

||a − b|| (29)

and ||.|| is an underlying norm (e.g., the L2 or Euclidean distance). The function h(A,B)
is called the directed Hausdorff distance from A to B. It identifies the point a ∈ A that is
the farthest from any point of B and measures the distance from a to its nearest neighbor
in B [58]. The direct computation method for the Hausdorff distance is time consuming,
but, for polyline representation, the Hausdorff distance can be easily calculated. Sup-
pose polylines A and B are represented as a sequence of vertices (A1, A2, . . . , Am) and
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Figure 9: Hausdorff distance between two polylines.

(B1, B2, . . . , Bn) respectively, then the Hausdorff distance is simplified as

H(A,B) = max{H ′(A,B), e(A,B)} (30)

where

H ′(A,B) = max{DA1, DA2, . . . , DAm, DB1, DB2, . . . , DBn} (31)

e(A,B) = max{||A1 − B1||, ||Am − Bn||} (32)

DAi is the perpendicular distance from Ai to polyline B, and DBi is the perpendicu-
lar distance from Bi to polyline A, as shown in Fig. 9. H ′(A,B) in Eq. (31) is the
perpendicular distance between two polylines A and B, which evaluates the accuracy in
determining the vertical location of a horizontal line and the horizontal location of a
vertical line. ||Ai−Bj|| is the Euclidean distance between points Ai and Bj. Suppose the
vertices of a polyline are sorted from left to right for a horizontal line, and top to bottom
for a vertical line. Then ||A1 − B1|| and ||Am − Bn|| are the end point determination
errors. Hausdorff distance H(A,B) in Eq. (30) combines the perpendicular distance and
end point determination errors into one metric.

For severely broken lines, however, it is hard to define the end points exactly. There-
fore, we prefer to use two separate metrics: the perpendicular distance and end point
determination error for evaluation, instead of a combined Hausdorff distance.

The end point determination error is an absolute value. As a supplemental metric,
the overlap rate of polylines A and B

o(A,B) =
min{Am, Bn} − max{A1, B1}
max{Am, Bn} − min{A1, B1}

(33)

is defined to evaluate the relative end point determination error.
As suggested in [59], if a detected line is within no more than five pixels to a ground-

truthed line in the perpendicular direction, it is said to be correctly detected. If the
perpendicular distance is larger than five pixels and no more than ten pixels, it is said
to be partially correct. Splitting and merging errors are all assigned as partially correct
too.

2.6.2 Quantitative Evaluation for Rule Line Detection

We obtained 168 Arabic document images with a total of 3,870 ground-truthed rule
lines, most of which are severely broken. We use 100 images to train the HMM, and the
remaining 68 images as the test set. The detection results on the test set are shown in
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Table 2: Comparison of our model-based method with other methods on the test set for
rule line detection (there are a total of 1,596 ground-truthed lines).

Detected Correct Partial Correct Missed False Alarm

Hough Transform 1,588 1,299 (81.4%) 60 (3.8%) 237 (14.9%) 229 (14.4%)
Projection Method 1,577 1,310 (82.1%) 112 (7.0%) 174 (10.9%) 155 (9.7%)

DSCC 2,162 1,398 (87.6%) 118 (7.4%) 80 (5.0%) 646 (40.5%)
Our Model-

Based Method 1,631 1,545 (96.8%) 49 (3.0%) 2 (0.1%) 37 (2.3%)

the last row of Table 2. On the test set, 96.8% of lines are detected correctly, with only
two lines missed. The false alarm rate is 2.3%. Most of the false alarms are caused by the
inconsistency between the detector and the subjective judgment of the ground-truther
when lines are severely broken. For correctly detected lines, we evaluate the end point
determination accuracy using the end point determination error and overlap rate defined
in Eq. (32) and (33) respectively. The average end point determination error is six pixels
and the overlap rate is 99.1%.

We compared our model-based line detection algorithm with other non-model-based
line detection algorithms: the Hough transform method [6], the projection method [7],
and the DSCC method [11]. Table 2 shows the line detection results on the test set
with different algorithms. The results of the Hough transform and projection methods
listed in the table are tested on the images after text filtering. The projections of lines
often fail to form peaks on the projection profile, if lines overlap with text or they are
severely broken. Text filtering helps lines to form peaks on the projection profile, therefore
increases the detection rate. On this data set, under roughly the same false alarm rate,
the detection accuracy increases from 73% on raw images to 82% on text-filtered images.
For either projection or Hough transform methods, only those peaks with values larger
than a threshold are picked as line positions. With a small threshold, we can detect
more lines, but the false alarm rate is high. Increasing the threshold will reduce the false
alarm rate, but increase the mis-detection rate. We selected the threshold to make the
false alarm rate roughly equal the mis-detection rate. To reduce the false alarm rate
of the Hough transform method further, we restrict the search range of θ to [−1o, 1o]
after skew correction. For the DSCC method, we restrict the merging direction to the
horizontal direction. As expected, our model-based method achieved much better results
in both accuracy and false alarm rate, due to the use of high level constraints between
neighboring lines.

2.7 Summary and Future Work

We present a novel approach to detect severely broken rule lines in documents. Our
method is based on a stochastic model to incorporate high level constraints into a gen-
eral line detection algorithm. Instead of detecting lines individually, we use the Viterbi
algorithm to detect all parallel lines simultaneously. Our method can detect 96.8% of
the severely broken rule lines in the Arabic database we collected. Some challenging
examples demonstrated the robustness of our approach.

After detection, rule lines must be removed before further document processing.
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Fig. 2d shows the document image after rule line removal. The result is reasonable;
when text strokes overlap with lines, some parts of text strokes may be removed erro-
neously. A more robust method should be developed to improve the line removal results.
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3 Known Form Processing

3.1 Introduction

Millions of form documents, such as tax return forms, health insurance forms, airline
vouchers, checks, and bank slips, are processed everyday [13, 14, 17, 60–62]. Processing
of such documents can be categorized as unknown and known form processing [14]. Un-
known form processing assumes no a priori knowledge from the input forms, and extracts
all information based on low level image analysis. Errors are expected and user assis-
tance is required. Known form processing, on the other hand, is designed to process a
pre-defined set of forms, where a priori information can be stored as templates in the
database to guide later processing. It is widely used in banks, post offices, and tax offices
where the types of forms are most often pre-defined. For an input form, the system
first selects the template that it matches best (form identification), then extracts an-
chors (such as specific marks and form frame lines) for registration to compensate for
variations produced by scanning (e.g., rotation, translation, scaling, and local nonlinear
distortions) 2. Finally, the identified template is used to guide the system to recognize
fields of interest on the form (different OCR engines may be used for different fields),
and output the recognition results to a database. Although special anchors may be avail-
able to facilitate form identification and registration for specially designed forms, more
general approaches use features related explicitly or implicitly to frame lines, such as the
frame lines themselves [13,14,60,61], form cells [62], and intersections of frame lines [17].
Robust detection of frame lines is crucial to these approaches. In the previous chapter,
we proposed a model-based parallel line detection algorithm using hidden Markov models
(HMM). In this chapter, we apply it for known form processing. As shown in Fig. 10a,
generally there are two groups of parallel lines (one horizontal and the other vertical)
on a form, so we use two HMMs to detect the horizontal and vertical lines separately.
The detected lines can be used for registration. Our algorithm can be extended for form
identification too, so in our approach, a unified framework solves both important tasks
in known form processing.

For known form processing, we need to not only detect lines reliably, but also find the
correspondence between the detected lines and those stored in the form template [13,14].
The method proposed by Tang et al. [13] assumes there is only one anchor line in a
pre-defined region, which can be distinguished easily from other lines. The application
of this method is restricted. Considering false alarms and mis-detections, the correspon-
dence problem is not trivial. Cesarini et al. [14] proposed a hypothesis and verification
paradigm as a solution. For a detected line in a pre-define region, several hypotheses
are generated about correspondence between the line and those in the template. Under
each hypothesis, the rough positions of other lines can be determined, then the system
searches the expected lines to verify the hypothesis. The output of the verification mod-
ule is binary: success or failure. All lines used for registration should be detected to
achieve a consistent solution, so it is not robust to line degradations. Both methods need

2If preprinted content (fixed part) dominates user-filled information (variant part), general image reg-
istration methods (e.g., correlation-based methods) can be used for form registration without detecting
any lines or landmarks.

27



(a) (b)

Figure 10: (a) An example deposit form of the Industrial and Commercial Bank of China.
There are two groups for parallel lines on this form, one horizontal and the other vertical.
(b) Line detection result using our model-based approach.

an initial region to detect the first anchor line, and only a subset of lines are used for
registration. In our approach, we use all lines for registration, but we do not perform
binary assertion during HMM decoding. Instead, we measure the probability of a projec-
tion to be generated by a line. The optimal detection results are achieved by the Viterbi
algorithm. The degradation of a few lines may not deteriorate the performance. Another
advantage of our approach is that the detection and correspondence problems are solved
simultaneously. After HMM decoding, the correspondence between the detected lines
and those in the form template (or the model) is achieved automatically.

The remainder of this chapter is organized as following. In Section 3.2, we apply
our general model-based line detection algorithm for form frame line detection. The
quantitative evaluation of the robustness of our approach is presented in Section 3.3.
Our approach can be extended for form identification, which is described in Section 3.4.
This chapter ends with a brief summary in Section 3.5.

3.2 Form Frame Line Detection

The application of the algorithm to known form processing is straightforward. Generally,
a collection of horizontal and vertical parallel lines exists on a form, so we use two HMMs
to detect the horizontal and vertical lines separately. To apply the algorithm, we need
to estimate two sets of parameters: (1) The distribution of observation symbols of each
state; and (2) The state duration probabilities of each gap state.

3.2.1 Estimation of the Distributions of Observation Symbols

In our case, the observation symbols are the projection profile, which has the range of
[0, w] for a horizontal projection (where w is the width of the image). As we stated
previously, a large number of observation symbols would cause difficulties in reliably
estimating the distributions with limited training samples. With some assumptions, we
can show that using a Gaussian distribution to model projections of a line over multiple
form instances is appropriate. In a widely used stochastic document image degradation
model [63], a white (black) pixel is randomly selected and flipped to black (white). The

28



(a) (b) (c) (d)
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Figure 11: The distributions of the observation symbols (horizontal projections) for 100
scanned instances of a bank deposit form. One example of the form is shown in Fig. 10a.
There are six horizontal lines on the form. (a) to (f) The histograms of the projections
of six horizontal lines respectively. (g) The histogram of the projections of the non-line
states.

projection is the summation of all black pixels on the line

h =
M
∑

i=1

ai (34)

where

ai =

{

1 if black pixel i is preserved
0 if black pixel i is flipped to white during degradation

(35)

Under white Gaussian noise (a widely used model for degradation), ai follows a Bernoulli
distribution: ai ∼ Bernoulli(ρ), where ρ is the probability for a black pixel to be lost.
Consequently, h follows a binomial distribution Bin(ρ,M)

P (h) =

(

M

h

)

ρM−h(1 − ρ)h. (36)

According to the central limit law, if M is large enough (or if the line is long enough),
then the distribution of random variable h converges to a Gaussian distribution [51]

lim
M→∞

h − E[h]
√

Mρ(1 − ρ)
−→ N (0, 1) in distribution. (37)

In known form processing, a set of forms are captured with similar imaging conditions.
Therefore, ρ is roughly constant for each form in the set. A Gaussian distribution is a good
approximation for the projections of a line over multiple form instances. The mean and
variance of the Gaussian distribution can be estimated from the ground-truth. Figs. 11a
to 11f show the distributions of the projections of all six horizontal lines on a set of bank
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Table 3: The distribution of the line gap between the first and second horizontal lines on
a bank deposit form. The average is 94 pixels. The row of distance lists the difference
to the average value.

Distance -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

Raw Occurrence 1 0 2 0 0 3 5 12 18 24 16 6 8 4 0 1 0 0 0

Symmetric

Regularization
.5 0 1 .5 0 3.5 6.5 9 17 24 17 9 6.5 3.5 0 .5 1 0 .5

Zero-Occurrence

Smoothing
.5 .5 1 .5 .5 3.5 6.5 9 17 24 17 9 6.5 3.5 .5 .5 1 .5 .5

deposit forms with one instance shown in Fig. 10a. The histogram is generated over 100
form samples. We can see that the Gaussian distribution is a good approximation. For
non-line states, the approximation is not good enough, since a projection is always no
less than zero (an exponential distribution may be more suitable), as shown in Fig. 11g.
We found in the experiments that the effect of this approximation error is negligible for
the final line detection result.

3.2.2 Estimation of the State Durations

The state duration of SG,i, i = 1, 2, . . . , N −1, represents the line gap between lines i and
i + 1, which can be estimated from the ground-truth. Table 3 shows the distribution of
the gap between the first and second horizontal lines on the bank deposit form in our
database of 100 samples. The average value of the gap is 94 pixels. The row of distance
lists the difference to the average value. The row of raw occurrence shows the number of
occurrences in which the gap takes a specific value. We can see that the variation is from
-9 pixels to 6 pixels, and the distribution is roughly symmetric around the average value.
Due to the sparse-data problem, some entries within the range of [-9, 6] are not observed
in the training set, which will deteriorate the performance. Therefore, data smoothing is
used. The row of symmetric regularization is the result after we impose the symmetry.
Lastly, we set the zero entries to the minimal value of all non-zero entries, as shown in
the row of zero-occurrence smoothing. After data smoothing, the distribution P1(d) can
be estimated by normalization. Similarly, we can get the distributions of other line gaps.

3.2.3 Decoding

After estimating parameters, we use the Viterbi algorithm to decode the observation.
Fig. 12 shows the decoding results of the Viterbi algorithm on the horizontal and vertical
projection profiles of the bank deposit form (Fig. 10a). The locations found by the Viterbi
algorithm are labeled with squares. We can see that instead of picking the highest peaks
as detected lines in the projection methods [7,10], our approach outputs the line positions
most compatible with the model.

After detecting the horizontal and vertical lines, the method described in the previous
chapter can be used to determine the end points of the lines. However, if a line is
severely degraded, the end points cannot be determined accurately. For many forms, the
intersections of horizontal and vertical lines can be used to determine the end points.
Sometimes, several lines may lie on the same line, for example, three dashed lines in the
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(a) (b)

Figure 12: The lines detected after decoding the HMMs using the Viterbi algorithm on
the horizontal (a) and vertical (b) projection profiles of the bank deposit form. The
original form is shown in Fig. 10a. The locations picked up by the Viterbi algorithm are
labeled with squares.

middle of the form as shown in Fig. 10a. Our HMM-based method can handle this special
case without difficulty. In this example, the vertical line gaps between dashed lines are
zero. They share the same horizontal projection. The Viterbi algorithm gives the vertical
position of these lines. The left and right end points are determined using their position
relative to the intersections of horizontal and vertical lines. In this case, horizontal and
vertical lines should be extended to get the intersection points. Fig. 10b shows the model-
based line detection result. We can see our method can detect the short lines which may
not form peaks on the projection profile (especially for the two shortest vertical lines),
which are most likely missed by other methods such as the Hough transform or projection
methods. Our method outputs the exact number of lines indicated by the model without
false alarms. Fig. 13 shows two more examples of an export registration form used by
the Customs Bureau of China and a portion of a US income tax form.

3.3 Experiments for Form Frame Line Detection

To evaluate the algorithm for known form processing, we collected 100 bank deposit
forms. In this experiment, we did not evaluate the accuracy of form registration directly.
The accuracy of form registration depends on which deformation model (global affine
transformation or more flexible local deformation) is used to transform the input form
to the prototype form. Since the detected lines are used for both form identification
(discussed in the next section) and registration, we evaluate the line detection accuracy.

The experiment demonstrated that one training sample can achieve reasonable results
if image quality is good. We selected the first image for training. The real value of the
projection of a line in this training sample is taken as the mean of the observation random
variable of the corresponding line state. The variance of the observation random variable
of a line state is set as 20% of its mean. The distribution of line gaps is set within
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(a) (b)

(c) (d)

Figure 13: Some examples for model-based form frame line detection. (a) and (b) An
export registration form used by the Customs Bureau of China and the corresponding line
detection result. (c) and (d) A portion of a US income tax form and the corresponding
line detection result. The detected lines are shown in black and overlay with the original
documents.

Table 4: Comparison of our model-based method with other methods for known form
processing (there are a total of 1,980 ground-truthed lines).

Detected Correct Partial Correct Missed False Alarm

Hough Transform 1,980 1,675 (84.6%) 8 (0.4%) 297 (15.0%) 297 (15.0%)
Projection Method 1,980 1,745 (88.1%) 15 (0.8%) 223 (11.3%) 220 (11.1%)

DSCC 2,032 1,803 (91.1%) 125 (6.3%) 175 (8.8%) 104 (5.3%)
Our Model-

Based Method 1,980 1,976 (99.8%) 4 (0.2%) 0 (0.0%) 0 (0.0%)

the range of [-10, 10] pixels around its real value in this sample. We tested it on the
remaining 99 form images. The last row in Table 4 shows the result, using the evaluation
metrics defined in the previous chapter. All lines are detected without any false alarms.
Only four lines are detected with large location errors. For comparison, Table 4 shows
the detection results of other algorithms. Both Hough transform and projection methods
need a threshold, the minimum pixels on a line, to reduce the false alarm rate. To
avoid using an arbitrarily threshold, we selected the first six longest horizontal lines
and 14 longest vertical lines as the detection results for both the Hough transform and
projection methods. Our algorithm clearly outperforms all three general line detection
methods in both mis-detection and false alarm rates.

In the following experiments, we tested the robustness of our method under different
scanning resolutions, scanning binarization thresholds, and synthesized image degrada-
tions. Generally, the more severe the degradation, the more accurate the model should
be in order to detect lines correctly. Therefore, in the following experiments, we increased
the number of training samples. We randomly selected 50 forms for training, and used
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Figure 14: Robustness testing. The curves labeled with ◦ shows the detection accuracy
under the condition where the test set has the same degradation level with the training
set. Curves labeled with + are the results when the test set and the training set have
different degradation levels. (a) Scanning resolution. (b) Binarization threshold. (c)
Synthesized degradation.

the remaining 50 forms for testing. Fig. 14a shows the line detection accuracy under
different scanning resolutions. As we can see, the performance of the algorithm stays
consistently high under a wide range of scanning resolutions from 75 dpi to 600 dpi. The
line width varies from about one pixel under 75 dpi resolution to 10 pixels under 600
dpi. Though our model does not include the duration of line states, this inaccuracy in
modeling has a negligible effect on its performance.

In the next experiment, we fixed the scanning resolution to 300 dpi and used different
binarization thresholds during scanning. If the threshold is too small, the lines are
severely broken as shown in Fig. 15a (with the threshold of 40). If the threshold is too
large, text and lines are smeared together, as shown in Fig. 15c (with the threshold of
240). As shown in Fig. 15b and d, our algorithm can still detect lines correctly under
such extreme conditions. The quantitative evaluation result is shown in Fig. 14b. The
curve labeled with ◦ in the figure shows the detection accuracy when the training set
and test set are scanned with the same binarization threshold. In most applications, the
test set may have different characteristics with the training set. The curve labeled with
+ in Fig. 14b shows the detection accuracy using the HMM trained on the training set
scanned with a binarization threshold of 128. As we can see, good results are achieved in
a wide range even though the test set has different characteristics with the training set.

Synthesized data are often used to test an algorithm because it can directly control
the image quality of the test samples. In the following experiments, we selected the data
set with good image quality (scanned with 300 dpi and the binarization threshold of
128), and randomly flipped a certain ratio of black pixels on lines to white, keeping all
pixels on text unchanged. Figs. 16a and 16c show the degraded images with 50% and
90% black pixels on lines flipped to white, respectively. As shown in Fig. 16b, the line
detection result is perfect even if half the black pixels are flipped. Fig. 16d shows that
the horizontal lines are still detected correctly even when 90% black pixels are flipped,
but the vertical lines are misdetected. Fig. 14c shows the detection accuracy versus
degradation level on the test set. The curve labeled with ◦ shows the results when the
test sets have the same degradation level with the training sets. We can see that our
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(c) (d)

Figure 15: Scanned form documents with different binarization thresholds and the cor-
responding line detection results. (a) and (c) Scanned images under thresholds of 40 and
240 respectively. (b) and (d) are corresponding line detection results of (a) and (c). The
detected lines are shown in black and overlay with the original documents.

method is very robust. It maintains good results with accuracy of 96.2% even when 80%
black pixels of lines are flipped. The curve labeled with + shows the accuracy on the
test sets using the HMM model trained on samples with the degradation level of 50%.
Almost the same accuracy is achieved until 70% black pixels on lines are flipped. After
that, it breaks down faster.

3.4 Form Identification

Our line detection algorithm can be extended to form identification. Suppose there are
n form templates λ1, λ2, . . . , λn. According to the Bayesian rule, λ̂ that maximizes the
posteriori probability is selected as the template for the input form

λ̂ = arg max
λi

P (λi|O) = arg max
λi

P (O|λi)P (λi). (38)

Here, O is the observation (the projection profile in our method). P (λi) is the priori
probability of form template λi. P (O|λi) is the probability of observing the sequence
of observations given the model λi, which can be calculated efficiently with the forward
algorithm [50].

Although a Gaussian distribution is a good approximation for observations of a line
state, it is not good enough to approximate the observations of a non-line state, as shown
in Fig. 11g. As demonstrated experimentally, such approximation error does not affect
the line detection results noticeably. However, it will make calculating the probability
P (O|λ) in Eq. (38) un-reliable, since the observations are dominated by non-line states.
Alternatively, given a form model λ, we first detect lines under the model. Suppose,
hL1, hL2, . . . , hLN are decoded as observations of line states, and g1, g2, . . . , gN−1 are line
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Figure 16: Degraded form documents and the corresponding line detection results. Red
lines drawn on original images indicate the detected lines. (a) About 50% of the pixels
of the lines are flipped. (c) about 90% of pixels of the lines are flipped. (b) and (d) are
corresponding line detection results to (a) and (c).

gaps, the probability of the input form sample belonging to the model λ is approximated
as

Q(O|λ) =
N

√

ΠN
i=1P (hLi|λ)ΠN−1

i=1 P (gi|λ) (39)

In the above equation, we omit the observations of non-line states. The model with the
highest probability is selected as the final form identification result.

We test the proposed method on the NIST Structured Forms Reference Set, NIST
Special Database 2 [64]. The data set consists of 5,590 pages of binary, black-and-white
images of synthesized documents. The documents in this database are 12 different tax
forms from the IRS 1040 Package X for the year 1988. These include Forms 1040, 2106,
2441, 4562, and 6251 together with Schedules A, B, C, D, E, F, and SE. Eight of these
forms contain two pages or form faces for a total of 20 different form faces represented
in the database. The number of samples of each form face varies from 59 to 900. The
first 20 samples of each form face are used for training and the rest for testing. The form
identification results are perfect with an accuracy of 100%.

3.5 Summary and Future Work

In this chapter, we applied our general model-based line detection algorithm to known
form processing. There are two tasks in known form processing: form identification and
form registration. These two tasks can be solved in one unified framework by extending
our model-based line detection algorithm. Our approach is robust under a wide range
of scanning resolutions, binarization thresholds, and synthesized degradation levels, as
demonstrated experimentally. A further improvement of the proposed work may use
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the Gaussian mixture distributions or the exponential distribution to replace the simple
Gaussian distribution to model the observations of non-line states.
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4 Handwriting Identification in Noisy Document Images

4.1 Introduction

Handwriting often combines with machine printed text. Handwriting in a machine
printed document often indicates corrections, additions, or other supplemental infor-
mation that should be treated differently from the main content. The segmentation and
recognition techniques requested for machine printed and handwritten text differ signifi-
cantly. Therefore, identification of handwriting from machine printed text is important
for the following document image analysis.

Handwriting/machine printed text discrimination can be performed at different levels,
such as the text line [17–20], word [21], or character level [22, 23]. Special consideration
must be given to the size of the region being segmented before performing any classi-
fication. We call the smallest unit for classification a pattern unit. If the unit is too
small, the information contained in it may not be sufficient for classification. If it is
too large, however, different types of components may be mixed in the same region. In
previous work [23] we conducted a performance evaluation for the classification accuracy
of machine printed text and handwriting at the character, word, and zone levels. Exper-
iments show that a reliable classification can be achieved at the word level. We therefore
segment images at the the word level, then perform classification.

The data set we are processing is noisy, which makes for a more challenging prob-
lem. Most document enhancement algorithms can remove large noise components (e.g.,
marginal black strips) with some simple rules [15,16], and small noise components (e.g.,
pepper-and-salt noise) with morphological operations. However, noise components with
a compatible size to printed words cannot be easily removed. In our approach, we treat
noise as a distinguished class and model it based on selected features. We treat the
problem as a three-class (machine printed text, handwriting, and noise) identification
problem.

In practice mis-classification happens in an overlapping feature space. This holds es-
pecially true for handwriting and noise. To deal with this problem, we exploit contextual
information in post-processing and refine the classification. Contextual information helps
improve classification accuracy. Many OCR systems use it, and its effectiveness has been
demonstrated in previous work [65, 66]. The key is to model the statistical dependency
among neighboring components. An OCR system outputs a text stream that is one-
dimensional. Therefore, an N-gram language model, based on an Nth order 1-D Markov
chain, effectively models the context. With assistance from a dictionary, the N-gram
approach can correct most recognition errors. Images, however, are two-dimensional.
Generally, 2-D signals are not causal, and it is much harder to model the dependency
among neighboring components in an image. Among the image models studied so far,
Markov random fields (MRF) have been widely studied and successfully used in many
applications [67]. MRFs are suitable for image analysis because the local statistical de-
pendency of an image can be well modeled by Markov properties. MRFs can incorporate
a priori contextual information or constraints in a quantitative way. The MRF model has
been extensively used in various image analysis applications, such as texture synthesis
and segmentation, edge detection, and image restoration [68,69]. We use MRFs to model
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the dependency of segmented neighboring blocks. As post-processing, MRFs can further
improve classification accuracy.

The proposed method is not limited to extracting handwriting from a heterogeneous
document. After classification, we can output different contents into different layers.
By separating noise, the layer of machine printed text is much cleaner than the original
noisy document. Our approach can be used as a document enhancement procedure,
which facilitates the further document image analysis tasks, such as zone segmentation
and OCR. In this chapter, we demonstrate the effectiveness of our approach on zone
segmentation.

The remainder of this chapter is organized as follows. In Section 4.2, we briefly review
the previous work on handwriting/machine printed text identification. Noise identifica-
tion and removal also relates to our work and is reviewed. We present the detailed
description of our classification method in Section 4.3. MRF based post-processing is
discussed in Section 4.4, and the experimental results are presented in Section 4.5. The
effectiveness of our approach for document enhancement is demonstrated in Section 4.6
with the application of zone segmentation. The chapter concludes with a brief summary
and a discussion of future work in Section 4.7.

4.2 Related Work

Some work has been accomplished on handwriting/machine printed text identification.
The classification is typically performed at the text line [17–20], word [21], or character
level [22,70]. At the line level, machine printed text lines are typically arranged regularly
with a straight baseline, while handwritten text lines are irregular with a varying base-
line. Srihari et al. [20] implemented a text line based approach using this characteristic
and achieved a classification accuracy of 95%. One advantage of this approach is that
it can be used in different scripts (Chinese, English, etc.) with little or no modifica-
tion. Guo et al. [21] proposed an approach based on the vertical projection profile of
the segmented words. They used a hidden Markov model (HMM) as the classifier and
achieved a classification accuracy of 97.2%. Although less information is available at the
character level, humans can still identify the handwritten and machine printed characters
easily, inspiring researchers to pursue classification at the character level. Kuhnke [22]
proposed a neural network-based approach with straightness and symmetry as features.
Zheng et al. [70] used run-length histogram features to identify handwritten and printed
Chinese characters and achieved promising results. In previous work, we implemented a
handwriting identification method based on several categories of features and a trained
Fisher linear discriminant classifier [23]. However, the problems introduced by noise are
not addressed.

Since our approach can be seen as a document enhancement technique, the work on
noise removal also relates to our work. Noise may be introduced in document images
through (1) physical degradation of the hard-copy documents during creation, and/or
storage, and (2) the digitization procedure, such as scanning. If severe enough, ei-
ther of them can reduce the performance of a document analysis system significantly.
Several document degradation models [63, 71, 72], methods for document quality as-
sessment [73, 74], and document enhancement algorithms [75–77] have been presented
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in previous work. One common enhancement approach is window-based morphologi-
cal filtering [75–77]. Morphological filtering performs a table looking-up procedure to
determine an output of ON (black pixel) or OFF (white pixel) for each entry of the
table, based on a windowed observation of its neighbors. These algorithms can be fur-
ther categorized as manually designed, semi-manually designed, or automatically trained
approaches. The kFill algorithm, proposed by O’Gorman [77], is a manually designed
approach and has been used by several other researchers [73,78]. Experiments show it is
effective for removing salt-and-pepper noise. Liang et al. [79] proposed a semi-manually
designed approach with a 3 × 3 window size. They manually determine some entries to
output ON or OFF based on a priori observations. The remaining entries are trained to
select the optimal output.

It is difficult to manually design a filter with a large window size, and success depends
on experience. If both ideal and degraded images are available, optimal filters can be de-
signed by training [76]. After registering the ideal and degraded images at the pixel level,
an optimal look-up table can be designed, based on observation of the outputs of each
specific windowed context. However, it is difficult to train, store, and retrieve the look-up
table when the window size is large. This approach requires both the original and the
corresponding degraded images for training. Loce [76] used artificially degraded images
generated by models for training, while Kanungo et al. [80–82] proposed methods for
validation and parameter estimation of degradation models. Though the uniformity and
sensitivity of their approach has been tested by other researchers [72,83], no degradation
model has been declared to pass the validation. Another problem with morphological
approaches is the small window sizes. The most commonly used window size is no larger
than 5 × 5, which is too small to contain enough information for enhancement.

The above approaches only identify and remove small-sized noise components. The re-
moval of large-sized noise components is also addressed in the literature, such as marginal
noise removal [84] and show-through removal [85,86]. It is hard to discriminate noise from
compatible sized text. In this dissertation, we treat noise as a distinguished class and
use a classification based approach.

4.3 Text Identification

In this section we present our text (machine printed or handwritten) extraction and
classification method.

4.3.1 Feature Extraction

Several sets of features are extracted for classification. Table 5 lists the descriptions and
sizes of the feature sets. Machine printed text, handwriting, and noise have different
visual appearances and physical structures. Structural features are extracted to reflect
these differences. Gabor filter features and run-length histogram features can capture
the difference in stroke orientation and stroke length between handwriting and printed
text. Compared with text, noise blocks often have a simple stroke complexity. Therefore,
crossing-count histogram features are exploited to model such differences. We aslo take
regions of machine printed text, handwriting, and noise blocks as different textures.
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Table 5: Features used for machine printed text/handwriting/noise classification
Feature set Feature description # of features # of features selected

Structural Region size, connected components 18 9
Gabor filter Stroke orientation 16 4

Run-length histogram Stroke length 20 5
Crossing-count histogram Stroke complexity 10 6

Bi-level co-occurrence Texture 16 2
2×2 gram Texture 60 5

Total 140 31

(a) (b)

(c) (d)

Figure 17: Illustration of feature extraction. (a) The overlap area of the connected
components inside a pattern unit is extracted as a structural feature. (b) Run-length
histogram features. (c) Crossing-count features. The crossing counts of the top and
bottom horizontal scan lines are 1 and 2, respectively. (d) Bi-level 2 × 2 gram features.
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Two sets of bi-level texture features (bi-level co-occurrence features and bi-level 2×2
gram features) are used for classification. In the following subsections we present these
features in detail.

4.3.2 Structural Features

We extract two sets of structural features. The first set includes features related to the
physical size of the blocks, such as density of black pixels, width, height, aspect ratio,
and area. Suppose the image of the block is I(x, y), 0 ≤ x < w, 0 ≤ y < h, and w, h are
its width and height, respectively. Each pixel in the block has two values: 0 represents
background (a white pixel) and 1 represents content (a black pixel). Then the density of
the black pixels d is

d =

w−1
∑

x=0

h−1
∑

y=0

I(x, y)

w × h
(40)

The sizes of machine printed words are more consistent than those of handwriting and
noise on the same page. However, machine printed words on different pages may vary
significantly. Therefore, we use a histogram technique to estimate the dominant font
size [16], then use the dominant font size to normalize the width (w), height (h), aspect
ratio (r), and area (a) of the block.

The second set of structural features is based on the connected components inside
the block, such as the mean and variance of the width (mw and σw), height (mh and
σh), aspect ratio (mr and σr), and area (ma and σa) of connected components. The sizes
of connected components within a machine printed word are more consistent, leading
to smaller σw and σh. For a handwritten word or noise block, the bounding boxes of
the connected components tend to overlap with each other, as shown in Fig. 17a. For
machine printed English words, however, each character forms a connected component
not overlapping with others. The overlapping area (the sum of the areas of the gray
rectangles in Fig. 17a) normalized by the total area of the block is calculated as a feature.
We also use the variance of the vertical projection as a feature. In a machine printed
text block, the vertical projection profile has obvious valleys and peaks since neighboring
characters do not touch each other. However, for a handwritten word or noise block, the
vertical projections are much smoother, resulting in smaller variance.

4.3.3 Gabor Filter Features

Gabor filters can represent signals in both the frequency and time domains with minimum
uncertainty [87] and have been widely used for texture analysis and segmentation [88].
Researchers found that they match the mammalian visual system very well, which pro-
vides further evidence that we can use it in classification tasks. In the spatial and
frequency domains, the two-dimensional Gabor filter is defined as

g(x, y) = exp

{

−π

[

x′2

σ2
x

+
y′2

σ2
y

]}

× cos{2π(u0x + v0y)} (41)
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G(u, v) = 2πσxσy(exp{−π[(u′ − u′
0)

2σ2
x + (v′ − v′

0)
2σ2

y ]} +

exp{−π[(u′ + u′
0)

2σ2
x + (v′ + v′

0)
2σ2

y ]}) (42)

where x′ = −x sin θ + y cos θ, y′ = −x cos θ− y sin θ, u′ = u sin θ− v cos θ, v′ = −u cos θ−
v sin θ, u′

0 = −u0 sin θ + v0 cos θ, v′
0 = −u0 cos θ − v0 sin θ, u0 = f cos θ, and v0 = f sin θ.

Here f and θ are two parameters, representing the central frequency and orientation of
the Gabor filter.

The variances of the filtered images are taken as features. In our experiments 16
Gabor filters with different orientations θk = k × 180/N, k = 1, 2, . . . 16, are used, which
generate 16 features.

4.3.4 Run-length Histogram Features

Run-length histogram features are proposed in [23] for machine printed/handwritten
Chinese character classification. These features are used in our case to capture the
difference between the stroke lengths of machine printed text, handwriting, and noise
blocks. First, black pixel run-lengths in four directions, including horizontal, vertical,
major diagonal, and minor diagonal, are extracted. We then calculate four histograms
of run-lengths for these four directions, as shown in Fig. 17b. To get scale-invariant
features, we normalize the histograms. Suppose Ck, k = 1, 2, ..., N , is the number of runs
with length k, and N is the maximal length of all possible runs, then the normalized
histogram C ′

k is

C ′
k =

Ck

N
∑

i=1

Ci

(43)

We then divide the histogram into five bins with equal width and use five Gaussian-shaped
weight windows to get the final features (Fig. 17b). Taking the horizontal run-length
histogram as an example, the run-length histogram feature Rhi is calculated as

Rhi =
w
∑

k=1

G(k; ui, σ)C ′
k, i = 1, 2, 3, 4, 5 (44)

where w is the width of the block (the maximal length of all possible horizontal run-
lengths) and G(k; ui, σ) is a Gaussian-shaped function:

G(k; ui, σ) = exp

{

−(k − ui)
2

2σ2

}

(45)

As shown in Fig. 17b, σ is chosen so the weight on each bin border is 0.5. Another
alternative is to use rectangular windows without overlap between neighboring bins.
Experiments show that the extracted features with Gaussian weighted windows are more
robust. Five features are extracted in each direction, leading to 20 features.

4.3.5 Crossing-Count Histogram Features

A crossing count is the number of times the pixel value changes from 0 (white pixel) to
1 (black pixel) along a horizontal or vertical raster scan line. As shown in Fig. 17c, the
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crossing counts of the top and bottom horizontal scan lines are 1 and 2, respectively.
Crossing counts can be used to measure stroke complexity [23,89]. In our approach, first
the crossing count for each horizontal and vertical scan line is calculated. Similarly, we
get two histograms for the horizontal and vertical crossing counts respectively. The same
technique (as in extracting the run-length histogram features) is exploited to get the final
features from the histograms. A total of 10 features are extracted.

4.3.6 Bi-level Co-occurrence Features

A co-occurrence count is the number of times a given pair of pixels occurs at a fixed
distance and orientation [90]. In the case of binary images, the possible co-occurrence
pairs are white-white, black-white, white-black, and black-black. In our case, we are
concerned primarily with the foreground. Since the white background region often ac-
counts for up to 80% of a document page, the occurrence frequency of white-white or
white-black pixel pairs will always be much higher than that of black-black pairs. The
black-black pairs carry most of the information. To eliminate the redundancy and re-
duce the effects of over-emphasizing the background, we consider only black-black pairs.
Four different orientations (horizontal, vertical, major diagonal and minor diagonal) and
four distance levels (1, 2, 4, and 8 pixels) are used to classify (16 features total). The
horizontal co-occurrence count Ch(d), for example, is defined as

Ch(d) =
∑

x

∑

y

I(x, y)I(x + d, y), d = 1, 2, 4, 8 (46)

I(x, y) = 0 for white pixels; therefore only black-black pixel pairs contribute. For a fixed
distance d, we normalize the occurrence by dividing by the sum of the occurrences in all
four directions.

4.3.7 Bi-level 2×2 gram Features

The N×M grams were first introduced in the context of image classification and re-
trieval [91]. An N×M gram extends the one-dimensional co-occurrence feature to the
two-dimensional case. We only consider 2 × 2 grams, which count the numbers of oc-
currences of the patterns shown in Fig. 17d. The cells labeled 0/1 should take specific
values, and the values of other cells are irrelevant. Therefore, there are 24 = 16 patterns
for each distance d. Like the co-occurrence features, the all white patterns are removed
to reduce over-emphasis on the background. For a fixed distance, the occurrences are
normalized by dividing by the sum of all occurrences. Four distances (1, 2, 4, and 8
pixels) are chosen, generating 4 × 15 = 60 features.

4.3.8 Feature Selection

There are two purposes for feature selection. The first involves reducing the computation
needed for feature extraction and classification. As shown in Table 5, we extract a total of
140 features from the segmented blocks. Though these features are designed to distinguish
between different types of blocks, some features may contain more information. Using
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only a small set of the most powerful features reduces the time for feature extraction and
classification. The second purpose is to alleviate the curse of dimensionality problem.
When the number of training samples is limited, using a large feature set may decrease
the generality of a classifier [92]. The larger the feature set, the more training samples
are needed. Therefore, we perform feature selection before feeding the features to the
classifier.

We use a forward search algorithm to perform feature selection [93]. We first divide
the whole feature set F into a currently selected feature set Fs and an un-selected feature
set Fn which satisfy

Fs ∩ Fn = Φ (47)

Fs ∪ Fn = F (48)

The selection procedure can then be described as

1. Set Fs = Φ, and Fn = F .

2. Label all features in Fn as un-tested.

3. Select one un-tested feature f ∈ Fn and label it as tested.

4. Put f and Fs together and generate a temporary selected feature set F f
s .

5. Estimate the classification accuracy with feature set F f
s using a 1-NN classifier

and leave-one-out cross validation technique. Basically, at each iteration only one
sample is used for testing, while the others are used for training. We repeat this
process until all samples have been used as testing samples once. The average
accuracy for all iterations is taken as the estimated accuracy for the current feature
set. The leave-one-out cross validation technique can estimate the accuracy of a
classifier with small variation [92].

6. If there are un-tested features in Fn, go to step 3.

7. Find a feature f̂ ∈ Fn, such that the corresponding temporary feature set F f
s has

the highest classification accuracy:

f̂ = arg max
f∈Fn

Accuracy(F f
s ) (49)

then move f̂ from Fn to Fs.

8. If Fn 6= Φ, go to step 2; otherwise exit.

We use LNKnet pattern classification software to conduct our feature selection experi-
ments [94]. LNKnet provides several classifiers, such as likelihood classifiers, k-NN clas-
sifiers, and neural network classifiers, and several feature selection algorithms such as
forward search, backward search, and forward and backward search. Feature selection
can be an extremely expensive task. Considering the large number of feature sets to
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(a) (b)

Figure 18: Feature analysis. (a) Feature selection: the best classification result is achieved
when 31 features are selected. (b) PCA: the best classification result is achieved when
64 principal components are used.

evaluate, and the number of classifiers to train, the lightweight forward feature selec-
tion algorithm and 1-NN classifier, which does not need training, are used in our feature
selection experiment.

We collected about 1,500 blocks for each class. As shown in Fig. 18a, when the number
of selected features increases, the error rate decreases sharply at first. The trend reverses
at some point. The best classification is achieved when only 31 features are selected, with
an error rate of 5.7%. When all features are used, the error rate increases to 9.2% due to
the limited number of training samples and large feature set. The last column in Table 5
lists the number of features selected in each set. It shows that texture features, such as
bi-level co-occurrence and 2 × 2 grams, are less discriminating than other feature sets,
mainly because of the small region size. Only 1/8 of the bi-level co-occurrence features
and 1/12 of the 2× 2 gram features are selected. Crossing-count histogram features and
structural features are more effective, with more than half of the original features in both
sets selected in the final feature set.

Principal component analysis (PCA) is another technique for reducing feature dimen-
sion [92]. To extract the first n principal components, we need to search a subspace of
dimension n with basis w. Suppose the mean is already removed from the feature vector
X, and let the projection of X onto this subspace be X̂

X̂ = (wT
1 X)w1 + (wT

2 X)w2 + . . . + (wT
nX)wn (50)

PCA finds the optimal subspace ŵ such that the energy contained in X̂ is maximized:

ŵ = arg max
w1,...,wn

n
∑

i=1

V ar
[

X̂i

]

s.t. wT
i wj =

{

1 if i = j
0 if i 6= j

(51)

The optimal basis is the first n eigenvectors of the covariance matrix of X, corresponding
to the first n eigenvalues [92]. The first n principal components are Pi = wT

i X, i =
1, . . . , n. The idea of PCA is to concentrate the energy into the first several principal
components. Assuming the classification information is contained in the energy, the
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first several principal components are more powerful than the remaining components.
Furthermore, PCA analysis can remove the correlation among features.

As in the feature selection experiment, we use the 1-NN classifier and the leave-one-
out technique to estimate the classification accuracy. Fig. 18b shows the classification
error rate versus the number of principal components used. As in feature selection, the
error rate reduces quickly at first until 16 principal components added. The minimal
error rate, 8.5%, is achieved when 64 principal components are used. Compared with
the minimum error rate of 5.7% achieved by the feature selection technique, PCA is
not as powerful as feature selection in this problem. Furthermore, to perform PCA, all
features must be extracted first. However, for feature selection, we only need to extract
the desired features, which would increase the feature extraction speed. Therefore, in the
following, we do classification on the 31 selected features.

4.3.9 Classification

Compared with the neural network (NN) and the support vector machine (SVM), the
Fisher linear discriminant classifier is easier to train, faster to classify, needs fewer train-
ing samples, and does not suffer from the over-training problems. According to the
comparison experiment in Subsection 4.5.2, the SVM classifier performs slightly better
than the Fisher linear discriminant classifier, but the latter is much faster. We therefore
use it for classification. For a feature vector X, the Fisher linear discriminant classifier
projects X onto one dimension Y in direction W

Y = WTX (52)

The Fisher criterion finds the optimal projection direction Wo by maximizing the ratio
of the between-class scatter to the within-class scatter, which benefits the classification.
Let Sw and Sb be the within- and between-class scatter matrices respectively,

Sw =
K
∑

k=1

∑

x∈class k

(x − uk)(x − uk)
T (53)

Sb =
K
∑

k=1

(uk − u0)(uk − u0)
T (54)

u0 =
1

K

K
∑

k=1

uk (55)

where uk is the mean vector of the kth class, u0 is the global mean vector, and K
is the number of classes. The optimal projection direction is the eigenvector of S−1

w Sb

corresponding to its largest eigenvalue [92]. For a two-class classification problem, we do
not need to calculate the eigenvectors of S−1

w Sb. It is shown that the optimal projection
direction is

Wo = S−1
w (u1 − u2) (56)
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Let Y1 and Y2 be the projections of two classes and let E[Y1] and E[Y2] be the means of
Y1 and Y2 respectively. Suppose E[Y1] > E[Y2], then the decision can be made as

C(X) =

{

class 1 If Y > (E[Y1] + E[Y2])/2
class 2 Otherwise

(57)

It is known that if the feature vector X is jointly Gaussian distributed, and the two
classes have the same covariance matrices, then the Fisher linear discriminant classifier
is optimal in a minimum classification error sense [92].

The Fisher linear discriminant classifier is often used for two-class classification prob-
lems. Although it can be extended to multi-class classification (three classes here), the
classification accuracy decreases due to the overlap between neighboring classes. There-
fore, we use three Fisher linear discriminant classifiers, each optimized for a two-class
classification problem (machine printed text/handwriting, machine printed text/noise,
and handwriting/noise). Each classifier outputs a classification confidence, and the final
decision is made by fusing the outputs of all three classifiers.

4.3.10 Classification Confidence

In a Fisher linear discriminant classifier, the feature vector is projected onto an axis on
which the ratio of between-class scatter to within-class scatter is maximized. According
to the central limit theorem [51], the distribution of the projection can be approximated
by a Gaussian distribution, if no feature has dominant variance over the others,

fY (y) =
1√
2πσ

exp

[

−1

2

(

y − m

σ

)2
]

, (58)

where fY (y) is the probability density function of the projection. The parameters m and
σ can be estimated from training samples. The classification confidence Ci,j of class i
using classifier j is defined as

Ci,j =

{

fY (y|X∈class i)

fY (y|X∈class i)+fY (y|X∈another class)
If i is applicable for classifier j.

0 Otherwise
(59)

where i is the class label and j represents the trained classifiers. If a classifier is trained
to classes 1 and 2, its output is not applicable to estimating the classification confidence
of class 3. Therefore, C3,j = 0. The final classification confidence is defined as

Ci =
1

2

3
∑

j=1

Ci,j (60)

Ci,j ∈ [0, 1] for the two applicable classifiers and Ci,j = 0 for the third classifier, Ci ∈ [0, 1].
However, Ci is not a good estimate of the a posteriori probability since

∑3
i=1 Ci = 1.5

instead of 1. We can take Ci as an estimate of a non-decreasing function of the a posteriori
probability, which is a kind of generalized classification confidence [95].
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Fig. 19 shows the word segmentation and classification results (with the Fisher linear
discriminant classifier) for the whole and parts of a document image, with blue, red, and
green representing machine printed text, handwriting, and noise respectively. We can see
that most of the blocks are correctly classified. However some blocks are misclassified
due to an overlap in the feature space. For example, some noise blocks are classified as
handwriting in Fig. 19b, and some small printed words are classified as noise in Fig. 19c.
Since little information is available in small areas, it is difficult to get good results. In the
next section, we present a method of Markov random field (MRF) based post-processing
to refine the classification by incorporating contextual information.

4.4 MRF-Based Post-Processing

4.4.1 Background

Let X denote the random field defined on Ω, and let Γ denote the set of all possible
configurations of X on Ω. X is an MRF with respect to the neighborhood η if it has the
following Markov property

Pr(X = x) > 0 for all x ∈ Γ (61)

P (xs|xr, r ∈ Ω, r 6= s) = P (xs|xr, r ∈ η) (62)

Compared with Markov chains, one difficulty with MRFs is that they have no chain
rule. The joint probability P (X = x) cannot be recursively written in terms of local
conditional probabilities P (xs|xr, r ∈ η). Therefore, it is difficult to get an optimal
estimate of the MRF X̂ which maximizes the a posteriori probability

X̂ = arg max
X

P (X|Y) (63)

The establishment of the connection between the MRF and Gibbs distribution provides
a way to optimize the MRF. To maximize the a posteriori probability of the MRF, we
need to minimize the total energy of the corresponding Gibbs distribution

X̂ = arg min
X

∑

c∈C

Vc(X) (64)

Here, a clique c is defined as a subset of sites in which every pair of distinct sites are
neighbors. The clique potential Vc(X) is the energy associated with a clique and depends
on the local configuration of clique c. Therefore, the optimization problem (63) is con-
verted to another optimization problem (64). The information about the observation Y

is contained in the clique system.
In the study of MRFs, the problems are often posed as labeling problems in which a

set of labels are assigned to sites of an MRF [69]. In our problem, each block constitutes a
site of an MRF. A label (machine printed text, handwriting, or noise) is assigned to each
block, and context information (encoded by the MRF model) is used to flip the labels so
that the total energy of the corresponding Gibbs distribution is minimized. Relaxation
algorithms are often used for MRF optimization [69].
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(a)

(b)

(c)

Figure 19: Word block segmentation and classification results, with blue, red, and green
representing machine printed text, handwriting, and noise respectively. (a) A whole
document image. (b) and (c) Two parts of the image in (a).
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(a) (b)

Figure 20: Clique definition. (a) Cp for horizontally arranged machine printed words.
(b) Cn for noise blocks.

4.4.2 Clique Definition

As shown in (64), the MRF is totally determined by clique c and clique potential Vc(X).
The design of the clique and its potential is crucial, but a systematic method is not yet
available. In our case, machine printed text, handwriting, and noise exhibit different
patterns of geometric relationships. Our definition of cliques reflects these differences.

Printed words often form horizontal (or vertical) text lines. Clique Cp is defined in
Fig. 20a, which models contextual constraints on neighboring machine printed words.
We first define the connection between word blocks i and j. As shown in Fig. 20a, Ov is
the vertical overlap between two blocks, and Dh is the horizontal distance between two
blocks. The distance between block i and j is

D(i, j) = |Dh(i, j) − Gw| + |Hi − Hj| + |Chi − Chj| (65)

where Dh(i, j) is the horizontal distances between words i and j, Gw is the estimated
average word gap in the whole document, Hi and Hj are the heights of blocks i and j
respectively, and Chi and Chj are the vertical centers of the two blocks. Two blocks are
connected if they satisfy

1. Ov ≥ min(Hi, Hj)/2

2. 0 ≤ Dh ≤ 2Gw

3. D(i, j) < Tp, where Tp is a threshold, which is not sensitive to post-processing.

After defining the connection between two blocks we can construct a graph in which
nodes represent blocks and edges link two connected nodes. If a node is connected with
more than one node on one side (left or right), we keep only the edge with the smallest
distance. Clique Cp can be represented by nodes together with their left and right
neighbors. If we cannot find neighbors on the left or/and right sides, the corresponding
neighbor is set to NULL.

Noise blocks exhibit random patterns in geometric relationships and tend to overlap
or in close proximity. As shown in Fig. 20b, the noise block labeled “Center” is overlapped
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with blocks 1, 2, 3, and is close to block 4. Clique Cn is defined primarily for noise blocks.
Similarly, the distance between two blocks is defined as

D(i, j) = max(Dh(i, j), Dv(i, j)) (66)

where Dh(i, j) = max(Li, Lj)−min(Ri, Rj), Dv(i, j) = max(Ti, Tj)−min(Bi, Bj), and L,
R, T , B are the left, right, top, and bottom coordinates of the corresponding blocks. If
two blocks overlap in the horizontal or vertical direction, then Dh(i, j) < 0 or Dv(i, j) < 0.
Blocks i and j are connected if, and only if, D(i, j) < Tn, where Tn is a threshold. If Tn is
too big, incorrect label flipping of noise and handwriting between two printed text lines
may happen. If Tn is too small, the contextual constraints on the noise blocks cannot be
used fully. We set Tn as half of the dominant character height (about 10 pixels in our
experiments). Each node, together with all nodes connected to it, defines clique Cn. The
number of connected nodes may vary from 0 to almost 10, depending on the size of the
block. As an approximation, we consider only the first four nearest connected neighbors.
If the number of neighbors is less than four, we set the corresponding neighbors to NULL.

The geometric constraint on handwriting has weaker horizontal or vertical structure
than machine printed words, thus it is partially reflected in both cliques Cp and Cn.
Therefore, we do not define a specific clique for handwriting.

4.4.3 Clique Potential

Clique potential is the energy associated with a clique. We assign high energy to an
undesirable configuration of the clique and low energy to a preferred configuration. For
example, an undesired configuration of clique Cp (as shown in Fig. 20a) is that the left
and right blocks are labeled as printed text and the center block as noise. Flipping
the label of the center block from noise to printed text would achieve a more preferred
configuration, and reduce the total energy. Another undesirable configuration occurs
when all blocks are labeled as printed text for the clique Cn in Fig. 20b. It should have
higher energy than the configuration in which all blocks are labeled as noise. In many
applications the clique potentials are defined ad hoc. One systematic way is to define
clique potential as the occurrence frequency of each clique in the training set, which can
be expressed as a function of local conditional probabilities. Based on this idea, we define
two clique potentials Vp(c) and Vn(c) for cliques Cp and Cn as

Vp(c) = − P (Xl, Xc, Xr)

(P (Xl)P (Xc)P (Xr))w
, (67)

Vn(c) = − P (Xc, X1, X2, X3, X4)

(P (Xc)P (X1)P (X2)P (X3)P (X4))w
, (68)

where Xl, Xc and Xr are labels for the left, center, and right blocks of clique c, w is a
constant, and Xi, i = 1, 2, 3, 4, is the label of the ith nearest block. The energy of the
corresponding Gibbs distribution is

U(X|Y) = ws

∑

s∈Ω

[−P (xs|ys)] + wp

∑

c∈Cp

Vp(c) + wn

∑

c∈Cn

Vn(c), (69)
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where ws, wp, and wn are weights which adjust the relative importance of classification
confidence and contextual information for cliques Cp and Cn. If ws = 1, wp = 0, and
wn = 0, no contextual information is used; with increase in wp and wn, more contex-
tual information is emphasized. If we set wp = wn = ∞, or equivalently ws = 0, no
classification confidence is used.

In the following experiments, we want to use MRFs for word block labeling. The
number of handwritten words is much smaller than the other two types, leading to a lower
estimated frequency of cliques with handwriting. As a result, the optimization tends to
label handwritten words as machine printed text or noise. Therefore, we regularize the
estimated clique frequency P (Xl, Xc, Xr) and P (Xc, X1, X2, X3, X4) by dividing by the
product of the probabilities of the word block labels which comprise the clique. The
above regularization is similar to the previous approach [96], where w is set to 1. In
our case, w is changeable; increasing w will emphasize handwritten words. Our clique
potential definition is systematic and can be optimized for different applications.

After defining the cliques and the corresponding clique potential, we can search the
optimal configuration of the labels of all blocks, so the total energy of the correspond-
ing Gibbs distribution is minimized. Relaxation algorithms are often used for MRF
optimization. There are two types of relaxation algorithms: stochastic and determin-
istic [69]. Stochastic algorithms can always converge to the global optimal solution if
some constraints are satisfied. They are, however, computationally demanding. Deter-
ministic algorithms are simpler, but only converge to local optimal solutions depending
on the initial value. In our experiments, highest confidence first (HCF), a deterministic
approach, is used for MRF optimization due to its fast speed and good performance [97].
In each iteration of the HCF algorithm, only one block is chosen to flip its label such
that the total energy reduces the largest. It repeats this procedure until no single flip-
ping can further reduce the total energy. Since each flipping would reduce the energy
and the energy is bounded below, the HCF algorithm converges in a finite number of
steps. Fig. 21 is an example of the refined classification results after post-processing.
Compared with Fig. 19, we can see in Figs. 21a and (b) that most misclassified noise
blocks are corrected, with a few exceptions due to their having fewer constraints. The
misclassified small machine printed words are all corrected in Fig. 21c.

4.5 Experiments

4.5.1 Data Set

We collected a total of 318 business letters from the tobacco industry litigation archives.
These document images are noisy with a significant amount of handwritten annotations
and signatures, a few logos, and no figures or tables. Currently, we identify three classes:
machine printed text, handwriting, and noise. We used 224 images for training and the
remaining 94 for testing. There are about 1,500 handwritten words in the training set.
Since much more machine printed and noise blocks are present, we randomly selected
about the same number of blocks of each type for training. We used accuracy and
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(a)

(b)

(c)

Figure 21: Word block classification results after post-processing with blue, red, and
green representing machine printed text, handwriting, and noise respectively. (a) The
whole document image. (b) and (c) Two parts of the image in (a).
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Table 6: Performance comparison of three different classifiers: the k-NN classifier, the
Fisher linear discriminant classifier, and the SVM classifier.

# of

blocks

the k-NN classifier the Fisher classifier the SVM classifier

Correct Accuracy Var Correct Accuracy Variance Correct Accuracy Var

Printed text 1,519 1,489 98.0% 1.4% 1,473 97.0% 1.1% 1,480 97.4% 1.2%

Handwriting 1,518 1,390 91.6% 2.3% 1,410 92.9% 2.2% 1,435 94.5% 2.1%

Noise 1,512 1,406 93.0% 2.0% 1,451 96.0% 1.5% 1,453 96.1% 1.2%

Overall 4,549 4,285 94.2% 1.3% 4,344 95.5% 0.9% 4,368 96.0% 0.9%

Table 7: Single word block classification.

# of blocks Percentage # of correctly

classified blocks

# of misclassified

blocks
Accuracy Precision

Printed text 19,227 66.9% 18,446 781 95.9% 99.5%
Handwriting 701 2.4% 653 48 93.2% 62.9%

Noise 8,802 30.7% 8,522 280 96.8% 93.0%
Overall 28,730 100.0% 27,621 1,109 96.1% N/A

precision as metrics to evaluate the result:

Accuracy of type i =
# of correctly classified blocks of type i

# of blocks of type i
, (70)

Precision of type i =
# of correctly classified blocks of type i

# of blocks classified as type i
. (71)

4.5.2 Classifier Comparison

In this section, we compare the performance of three different classifiers: the k-NN classi-
fier, the Fisher linear discriminant classifier, and the SVM classifier. The SVM classifier
is based on VC dimension theory and structural risk minimization theory of statistical
learning [98]. A public domain SVM tool, LibSVM, is used in the following experi-
ment [99]. The N-fold (N = 10 in our experiment) verification technique, a variation
of the leave-one-out technique, is used to estimate the classification accuracy. Instead
of holding one sample for testing at each iteration, it first divides the data set into N
groups (N = 10 in our experiment), then holds one group of samples for testing and
the remaining groups for training. Table 6 shows the classification accuracies of all the
classifiers. We can see that the SVM classifier achieved the highest accuracy. Considering
the large variance, the improvement is not significant. The variance of the classification
accuracy of all classifiers is the smallest for printed text and the largest for handwrit-
ing, indicating that the printed text is more compact in the feature space. Among all
three classifiers, the Fisher linear discriminant classifier is the fastest since it needs only
one vector multiplication to perform a classification. Therefore, we use the Fisher linear
discriminant classifier for the rest of the experiments.

The classification result on the test set of 94 images, using the Fisher linear discrimi-
nant classifier, is shown in Table 7. The accuracies on all three classes range from 93.2%
to 96.8%, with an overall accuracy of 96.1%. While this overall accuracy is high, we
notice that the precision for handwriting is low (62.9%). This is mainly because the
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(a) (b) (c)

Figure 22: MRF-based post-processing. (a) Number of corrected blocks using clique Cp.
(b) Number of corrected blocks using clique Cn. (c) Number of corrected blocks using
clique Cp and classification confidence.

number of handwritten words in the testing set is small. Even small percentages of mis-
classification of machine printed text and noise as handwriting will significantly decrease
the precision of handwriting.

4.5.3 Post-processing Using MRFs

In the following experiments we investigate how MRFs can improve classification accu-
racy. In the first run, we set ws = 0 , wn = 0 and wp = 1 to show the effectiveness of clique
Cp. Fig. 22a shows the number of corrected blocks, which were previously misclassified,
with change in w. As expected, Cp is effective for machine printed words, but not as ef-
fective for handwriting and noise. When w = 0.3 (under this condition, the classification
accuracy of all three classes increases), 355 (46%) of the previously misclassified machine
printed words are corrected. When w increases, handwriting is emphasized more, leading
to higher classification accuracy of handwriting, and lower accuracy of machine printed
words and noise. In practice, w can be adjusted to optimize the overall accuracy.

In the second run, we test the effectiveness of clique Cn by setting ws = 0, wp = 0,
and wn = 1. As shown in Fig. 22b, clique Cn effectively corrects classification errors of
noise blocks. The classification error of noise blocks is greatly reduced when w is small.
For w = 0.6 (under this condition, the classification accuracy of all classes increases), the
number of misclassified noise blocks is reduced by 99 (35%). Cn can also correct some
classification errors of machine printed words, but is less effective than Cp as shown in
Fig. 22a.

The third run tests the effectiveness of classification confidence for post-processing.
Fig. 22c shows post-processing results by adjusting wp when w = 0.3, wn = 0, and
ws = 1. Adjusting wp will change the total flip number. When wp = 0, the energy
reaches the minimum with the initial labels, and the total flip number is 0. When
wp increases, more emphasis is placed on contextual information, and the flip number
increases. When wp → +∞, it converges to the case of wp = 1 and ws = 0, the setting
of the first run. The maximal overall classification accuracy is achieved when wp = 6.
Compared with the first run, the total number of corrected blocks increases from 389 to
424 by incorporating classification confidence. Similar results are achieved by combining
classification confidence with clique Cn.
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Table 8: Word block classification after MRF based post-processing.

# of blocks

# of

correctly

classified
blocks

# of

misclassified
blocks

Reduction of
misclassified

blocks

Error
reduction

rate
Accuracy Precision

Printed text 19,227 18,835 392 389 49.8% 98.0% 99.7%
Handwriting 701 652 49 -1 -2.1% 93.0% 83.3%

Noise 8,802 8,682 120 160 57.1% 98.6% 96.0%
Total 28,730 28,169 561 548 49.4% 98.1% N/A

In the last run, we fix ws = 1 and manually adjust w, wp, and wn to optimize the
overall classification accuracy. The final parameters we chose are w = 0.39, wp = 5, and
wn = 4. Table 8 shows the results after post-processing. The “Error Reduction Rate” in
Table 8 is defined as follows:

Error
Reduction

Rate
=

# of Errors Before Post-Processing − # of Errors After Post-Processing

# of Error Before Post-Processing

(72)
The error rate reduces to about half of the original for both machine printed text

and noise, but increases slightly for handwriting. However, compared with Table 7, the
precision of handwriting increases from 62.9% to 83.3% due to fewer machine printed
text and noise mis-classifications as handwriting. The overall accuracy increases from
96.1% to 98.1%.

Fig. 23 shows an example of machine printed text and handwriting identification
from noisy documents. To display the classification results clearly, we decompose the
classified image into three layers, representing machine printed text (Fig. 23b), hand-
writing (Fig. 23c), and noise (Fig. 23d) respectively. The result is good with few mis-
classifications.

Our approach is general and can be extended to other languages with minor modi-
fication. Fig. 24 shows identification results for a Chinese document. In Chinese, there
is no clear definition of words and no spaces between neighboring words. Therefore, the
parameters of our word segmentation module are adjusted to get characters. We only
need to retrain the classifiers; the post-processing module is intact. We can see that most
handwriting and noise blocks are classified correctly, but several machine printed digits
are misclassified as handwriting. On the right margin of the document, some machine
printed text is identified as noise due to touching.

Our approach is fast; the averaging processing time for a business letter scanned at
300 dpi is about 2-3 seconds on a PC with 1.7 GHz CPU and 1.0 GB memory.

4.6 Application to Zone Segmentation in Noisy Images

The proposed method is not limited to extract handwriting from a heterogeneous docu-
ment. After classification, we can output different contents into different layers. By sep-
arating noise, the layer of machine printed text becomes cleaner than the original noisy
document. Therefore, our approach can be used as a document enhancement procedure,
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(a) (b)

(c) (d)

Figure 23: An example of machine printed text and handwriting identification from
noisy documents. (a) The original document image. (b) Machine printed text. (c)
Handwriting. (d) Noise. The logo is classified as noise since currently we only consider
three classes.
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(a) (b)

(c) (d)

Figure 24: An example of machine printed text and handwriting identification from
Chinese documents. (a) Original Chinese document image. (b) Machine printed text.
(c) Handwriting. (d) Noise.
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which facilitates further document image analysis tasks, such as zone segmentation and
OCR.

In this section, we show that our method can improve general zone segmentation
results after removing identified noise. We evaluated two widely used zone segmentation
algorithms: the Docstrum algorithm [16] and ScanSoft SDK, a commercial OCR software
package [100]. Many different zone segmentation evaluation metrics have been proposed
in previous work. Kanai et al. [101] evaluated zone segmentation accuracy from the
OCR aspect. Any zone splitting and merging, if it does not affect the reading order of
the text, is not penalized. The approach of Mao and Kanungo [102] is based on text
lines, which penalizes only horizontal text line splitting and merging, since it will change
the reading order of text. Randriamasy et al. [103] proposed an evaluation method based
on multiple ground truth, which is very expensive. Liang’s approach is performed at the
zone level [75]. After finding the correspondence between the segmented and ground-
truthed zones, any large enough difference is penalized. We use Liang’s scheme in our
experiment since we focus on zone segmentation. From the OCR perspective, vertical
splitting or merging of different zones should not be penalized even when these zones have
different physical and semantic properties. From the point of view for zone segmentation,
it should be penalized.

There are 1,374 machine printed text zones in 94 noisy document images. The ex-
perimental results are shown in Table 9. All merging and splitting errors are counted as
partially correct in the table. Before noise removal, ScanSoft has very poor results, an
accuracy of 15.9%, on noisy documents under this metric. After analyzing the segmen-
tation results, we found that ScanSoft tends to merge horizontally arranged zones into
one zone, which is suitable for documents with simple layouts such as technical articles,
but not for other document types such as business letters. The Docstrum algorithm out-
puts many more zones than ScanSoft, resulting in a higher accuracy (53.0%), but also a
higher false alarm rate (114.1%). After noise removal, the accuracy of both algorithms
increases significantly, from 15.9% to 48.4% for ScanSoft and from 53.0% to 78.0% for the
Docstrum algorithm. The false alarm rate is reduced from 32.5% to 1.3% for ScanSoft
and from 114.1% to 7.9% for Docstrum.

Fig. 25 shows the zone segmentation results for two noisy documents with the Doc-
strum algorithm before and after noise removal. The handwriting is output to another
layer, not shown here. After noise removal, we see fewer splitting and merging errors,
and overall the segmentation results have significantly improved.

4.7 Summary and Future Work

In this chapter, we have presented an approach to segmenting and identifying handwrit-
ing from machine printed text in extremely noisy document images. Instead of using
simple filtering rules, we treat noise as a distinct class. We use statistical classification
techniques to classify each block into machine printed text, handwriting, and noise. We
then use Markov random fields to incorporate contextual information for post-processing.
Experiments show that MRFs are an effective tool for modeling local dependency among
neighboring image components. After post-processing, the classification error rate is
reduced by approximately 50%.
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(a) (b)

(c) (d)

Figure 25: Zone segmentation before and after noise removal using the Docstrum algo-
rithm. (a) and (c) show the results before noise removal. (b) and (d) are the results after
noise removal.
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Table 9: Machine printed zone segmentation experimental results on 94 noisy document
images (totally 1,374 zones), before and after noise removal.

Before noise removal After noise removal

Correctly

segmented
zones

False
alarm
zones

Partially

correctly

segmented
zones

Missed
zones

Correctly

segmented
zones

False
alarm
zones

Partially

correctly

segmented
zones

Missed
zones

ScanSoft 219
(15.9%)

446
(32.5%)

1,148

(83.7%)
7

(0.5%)
665

(48.4%)
18

(1.3%)
671

(48.8%)
38

(2.8%)

Docstrum 728
(53.0%)

1,568

(114.1%)
646

(47.0%)
0

(0.0%)

1,071

(78.0%)
109

(7.9%)
270

(19.7%)
33

(2.4%)

Our method is general enough to be extended to documents in some other scripts,
such as Chinese, by re-training the classifier. However, our approach does not apply
in a straightforward manner to cursive scripts such as Arabic. Two observations used
to discriminate handwriting from machine printed text for English documents do not
hold for Arabic documents. (1) Handwriting is more cursive than machine printed text
in English documents. However, machine printed Arabic text is cursive in nature. (2)
People like to connect several characters during writing. However, many machine printed
Arabic characters are also connected. Preliminary experiments using the same feature set
proposed in this chapter were performed for Arabic documents, resulting in a low classi-
fication accuracy at word level. New features should be designed for Arabic documents.
It should be much easier to distinguish handwriting from machine printed text in Arabic
at the text line level. However, how to reliably extract text line from a heterogeneous
and noisy document is challenging problem in itself.
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5 Handwriting Matching

5.1 Introduction

Handwriting samples (the same content) are often produced with large deformation by
different persons or the same person at different times.3 Due to the difficulty in re-
producing a handwriting sample exactly, handwriting is often used to identify a per-
son. On the other hand, large deformation is a challenge for other handwriting related
applications such as handwriting recognition and retrieval. To study the deformation
characteristics, it is crucial to automatically establish the correspondence between two
handwriting samples, which have the following applications:

1. It is much easier to define similarity measures between handwriting samples after
establishing the correspondence. The measures are often more robust and have
more distinguishing power, comparing to the case where we do not know the cor-
respondence [24,104,105].

2. The deformation characteristics learned can be used to synthesize visually realistic
handwriting samples [106]. The quality of a trained statistical model for pattern
classification depends highly on the quality of the training set. As a rule, the more
samples used for training, the higher the generalization capability of the trained
classifier. Since collecting a large volume of handwriting samples is generally very
expensive, synthesized samples are often used to enlarge the training set [107,108].

In this chapter, we study the handwriting matching problem. In the next two chapters,
we will apply our matching algorithm to handwriting synthesis and retrieval, respectively.

We study handwriting matching in a broader context of shape matching, which is
often encountered in image analysis, computer vision, and pattern recognition. A shape
may be represented as a set of features at different levels, such as points, line segments,
curves, or surfaces. Shape matching may be performed on these representations. The
survey paper by Loncaric [109] covers the extraction and representation of a shape.
Different distance definitions between two features (i.e., point, lines, or curves) and their
use in shape matching can be found in [110]. In general, the higher the level of a feature,
the more difficult it is to extract the feature reliably. The extraction of interesting
points, for example, is easy (sometimes trivial), and it is more general since lines and
surfaces can be discretized as a set of points. Although such discretization is by no
means optimal, reasonable matching results may be achieved in many cases [111]. Point
matching, therefore, is often used in applications such as pose estimation [112, 113],
medical image registration [114], surface registration [115, 116], object recognition [24],
and handwriting recognition [104,105].

In our approach, we first extract the handwriting skeleton, then uniformly sample a
set of points from the skeleton. After that, we develop an algorithm to estimate the cor-
respondence between two point sets. Compared to the original pixel-based representation
(which can be seen as a representation with dense points), our approach demands fewer

3In this chapter, we exclude the variation produced by different contents (e.g., the difference between
handwriting of letters ’a’ and ’b’). Throughout this chapter, we focus on the deformation in shape.
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points. Several hundred points are enough to represent the structure of handwriting. An-
other advantage is our representation is more robust to stroke width variation, which is
often introduced by the use of different writing tools or different digitization parameters
(e.g., different parameters for scanning and binarization). Our point matching algorithm
uses no or little prior knowledge of handwriting, and is general enough to be applied to
other point pattern based nonrigid shape matching problems. In the remaining of this
chapter, we describe our algorithm in the broader context of nonrigid shape matching,
instead of the narrower handwriting matching.

5.1.1 Overview of Our Approach

Although the absolute distance between two points may change significantly under non-
rigid deformation, the neighborhood structure of a point is generally well-preserved due
to physical constraints. For example, a human face is a nonrigid shape, but the relative
position of chin, nose, mouth, and eyes cannot deform independently due to underlying
constraints of bones and muscles. These physical constraints restrict the deformation of
the point set sampled from a face. The rough structure of a shape is typically preserved,
otherwise even people cannot match shapes reliably under arbitrary large deformation.
Such constraints may be represented as the ordering of points on a curve. Sebastian et
al. [117] demonstrated the effectiveness of point ordering in matching curves, but for gen-
eral shapes other than curves, local point ordering is difficult to describe, and is ignored
in many point matching algorithms [24]. As a major contribution, we formulate point
matching as an optimization problem to preserve local neighborhood structures. In ad-
dition to the physical constraint explanation, our approach is supported from cognitive
experiments of human shape perception. Strong evidence suggests the early stages of
human visual processing is local, parallel, and bottom-up, though feedback may be nec-
essary in later stages. Preserving local neighborhood structures is important for people
to detect and recognize shapes efficiently and reliably [118,119].

In our approach, we formulate point matching as an optimization problem to preserve
local neighborhood structures during matching. Our formulation has a simple graph
matching interpretation, where each point is a node in the graph and two nodes are
connected by an edge if they are neighbors. The optimal match between two graphs is
the one that maximizes the number of matched edges (i.e., the number of neighborhood
relations). Graph matching is an NP-hard problem. Exhaustive or branch-and-bound
search for a global optimal solution is only realistic for graphs with few nodes. As
an alternative, a discrete optimization problem can be converted to a continuous one,
allowing several continuous optimization techniques to be applied [120, 121]. In our
approach, we use the shape context distance to initialize graph matching, followed by a
relaxation labeling process to refine the match.

5.1.2 Previous Work

Shapes can be roughly categorized as rigid or nonrigid, and the realization of a shape
may undergo various deformations in captured images. With a small number of transfor-
mation parameters (six for a 2-D affine transformation), rigid shape matching under the
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affine [111,115] or projective transformation [113] is relatively easy and has been widely
studied with an extensive literature. Since it is impossible to sufficiently discuss previous
publications without omitting many excellent works, we refer the reader to other survey
papers for a large bibliography [122, 123]. Although many point matching algorithms
developed for rigid shapes can tolerate some degree of noise or local distortions, large
free-form deformation presents a significant challenge. Recently, point matching for non-
rigid shapes has received more and more attention. In the following literature review, we
will focus on publications on nonrigid shape matching.

Point matching for nonrigid shapes is problematic because the method must com-
pensate for both linear distortions (i.e., translation, rotation, scale changes, and shear)
and non-linear distortions. Therefore, the common framework of iterated correspondence
and transformation estimation is used widely. The iterated closest point (ICP) algorithm
is a well-known heuristic approach proposed by Besl and McKay [111, 115]. Assuming
two shapes are roughly aligned, for each point in one shape, the closest point in the
other shape is taken as the current estimate of the correspondence. The affine trans-
formation estimated with the current correspondence will then bring two shapes closer.
ICP was later extended for nonrigid free-form surfaces [116]. The framework consists of
three stages. First, the rigid displacement is estimated using surface curvatures. Sec-
ond, the global affine transformation is estimated using the ICP algorithm. Third, a
local affine transformation (LAT) is attached to each point to deform the surface locally.
Wakahara [104] used LAT to match and recognize handwritten characters. A dynamic
window with a gradually decreasing size is used to estimate the local affine transforma-
tion for a point. This approach was later improved by combining global and local affine
transformations to increase the robustness [105].

Although LAT has enough flexibility to model local nonrigid deformation, no stan-
dard exists to define the neighborhood window size to estimate the parameters of LAT.
How to combine the global and local affine transformations is an open problem as well,
so more flexible deformation models with closed-form representations are desired. In the
literature on interpolation and approximation, radial basis functions (RBF) with different
kernel functions, such as the thin plate spline (TPS) [124] and the Gaussian RBF [125],
are widely used. Recently, the TPS deformation model began to be applied in point
matching [24, 25] because it can be formulated as an optimal solution of the bending of
a thin plate [124]. Chui and Rangarajan [25] proposed an optimization based approach,
the TPS-RPM algorithm. The TPS model’s bending energy and the average Euclidean
distance between two point sets are combined in an objective function. The soft assign-
ment technique and deterministic annealing algorithm are used to search for the optimal
solution, which significantly outperforms the ICP algorithm on nonrigid point match-
ing. Belongie et al. [24] proposed another method for nonrigid point matching. In this
approach, a shape context is assigned to a given point, which describes the relative distri-
bution of the other points in the shape. After defining the similarity between two points
based on their shape contexts, the Hungarian algorithm [126] searches for the optimal
match between the two point sets. Similarly, the TPS model brings two shapes closer in
each iteration.

More recently, Glaunes et al. [127] proposed another point matching approach. Taking
a point set as a sampling of the underlining distribution, they proposed a theory based on
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diffeomorphisms on distributions. Their formulation reduces to an optimization problem
with a weighted summation of two parts: the energy associated with the deformation
and the distance between two point sets under this deformation. This is similar to
the objective function in [25], although no explicit deformation model is assumed. The
variational method is used to search for the optimal deformation. Experimental results
on synthesized data are encouraging, but more extensive tests should be performed to
show the effectiveness of their approach.

Another interesting work is matching articulated objects [112]. An articulated object
(such as a person) is composed of several rigid segments connected by pivot points. The
deformation of rigid segments can be modeled with an affine transformation. A global
hierarchical search strategy searches for and matches pivot points, and local matching
of rigid segments is used to prune the search tree, thus reducing the computational
cost [112].

The remainder of this chapter is organized as follows. In Section 5.2, we formu-
late point matching as an optimization problem. Our strategy to search for an optimal
solution is described in Section 5.3. Shape deformation models, such as the affine trans-
formation and TPS, are discussed in Section 5.4, followed by a brief summary of our
approach in Section 5.5. We demonstrate the robustness of our approach with experi-
ments in Section 5.6, and the chapter concludes with a discussion of the future work in
Section 5.7.

5.2 Problem Formulation

In this section, we formulate point matching as an optimization problem. Suppose a
template shape T is composed of M points, ST = {T1, T2, · · · , TM}, and a deformed
shape D is composed of N points, SD = {D1, D2, · · · , DN}. It is a common practice
to enforce the one-to-one matching constraint in point matching, so the point sets ST

and SD are augmented to S ′
T = {T1, T2, · · · , TM , nil} and S ′

D = {D1, D2, · · · , DN , nil}
respectively, by introducing a dummy or nil point. A match between shapes T and D
is f : S ′

T ⇔ S ′
D, where the matching of normal points is one-to-one, but multiple points

may be matched to a dummy point.
Under a rigid transformation (i.e., translation and rotation), the distance between

any pair of points is preserved. Therefore, the optimal match f̂ is

f̂ = arg min
f

C(T,D, f), (73)

where

C(T,D, f) =
M
∑

m=1

M
∑

i=1

(

‖Tm − Ti‖ − ‖Df(m) − Df(i)‖
)2

+
N
∑

n=1

N
∑

j=1

(

‖Dn − Dj‖ − ‖Tf−1(n) − Tf−1(j)‖
)2

. (74)

In this cost function, we penalize any matching error which does not preserve the distance
of a point pair. If M = N and no points are matched to dummy points, the first term
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and the second term in (74) should be equal, and the optimal match should achieve zero
penalty, C(T,D, f̂) = 0. Points matching a dummy point need special treatment, and to
simplify the representation, we do not describe such treatment here. We will return to
this issue.

If nonrigid deformation is present, the distance between a pair of points will not be
preserved, especially for points which are far apart. On the other hand, due to physical
constraints and in order to preserve the rough structure, the local neighborhood of a
point may not change freely. We, therefore, define a neighborhood for point i as Ni. The
neighborhood relationship is symmetric, meaning if j ∈ Ni then i ∈ Nj. Since we want
to preserve the distances of neighboring point pairs under deformation, (74) becomes

C(T,D, f) =
M
∑

m=1

∑

i∈Nm

(

‖Tm − Ti‖ − ‖Df(m) − Df(i)‖
)2

+
N
∑

n=1

∑

j∈Nn

(

‖Dn − Dj‖ − ‖Tf−1(n) − Tf−1(j)‖
)2

. (75)

The absolute distance of a pair of points is not preserved well under scale changes.
Therefore, we quantize the distance to two levels as

‖Tm − Ti‖ =

{

0 m ∈ Ni

1 m /∈ Ni
and ‖Dn − Dj‖ =

{

0 n ∈ Nj

1 n /∈ Nj
. (76)

(75) then is simplified to

C(T,D, f) =
M
∑

m=1

∑

i∈Nm

d(f(m), f(i)) +
N
∑

n=1

∑

j∈Nn

d(f−1(n), f−1(j)), (77)

where

d(i, j) =

{

0 j ∈ Ni

1 j /∈ Ni
. (78)

To deal with points matched to a dummy point, we let d(., nil) = d(nil, .) = d(nil, nil) =
1 to discourage the match.

In the following, we rewrite the objective function of (77), and interpret it as a graph
matching problem. First, we subtract a constant term from C(T,D, f).

C ′(T,D, f) = C(T,D, f) −
M
∑

m=1

∑

i∈Nm

1 −
N
∑

n=1

∑

j∈Nn

1

=
M
∑

m=1

∑

i∈Nm

[d(f(m), f(i)) − 1] +
N
∑

n=1

∑

j∈Nn

[d(f−1(n), f−1(j)) − 1]

= −
M
∑

m=1

∑

i∈Nm

δ(f(m), f(i)) −
N
∑

n=1

∑

j∈Nn

δ(f−1(n), f−1(j)) (79)
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(a) (b)

Figure 26: A point set (a) and its graph representation (b).

where
δ(i, j) = 1 − d(i, j) (80)

Minimizing C(T,D, f) is equivalent to minimizing C ′(T,D, f) since the difference be-
tween them is a constant. Therefore, the minimization problem of (73) is equivalent to
the following maximization problem.

f̂ = arg max
f

S(T,D, f) (81)

where

S(T,D, f) =
M
∑

m=1

∑

i∈Nm

δ(f(m), f(i)) +
N
∑

n=1

∑

j∈Nn

δ(f−1(n), f−1(j)) (82)

This formulation has a simple graph matching interpretation. Each point is a node in the
graph, and two nodes are connected by an edge if they are neighbors. The dummy node
is not connected to other nodes in the graph. If connected nodes m and i in one graph
are matched to connected nodes f(m) and f(i) in the other graph, δ(f(m), f(i)) = 1.
The optimal solution of (81) is the one that maximizes the number of matched edges of
two graphs.

No obvious neighborhood definition exists for a point set. In the following we present
a simple neighborhood definition.4 Initially, the graph is fully connected, then we remove
long edges until a pre-defined number of edges are preserved. Supposing M nodes in the
graph and on average each point has Eave neighbors, then the number of preserved edges
is M × Eave/2 (Eave = 5 in default). With this neighborhood definition, the graph
representation of a point set is translation, rotation, and scale invariant. Fig. 26 shows a
point set and its graph representation. We expect points connected with an edge move
together under deformation, so the structure of the graph is preserved.

Graph matching (more generally, attributed relational graph matching) is used in [128]
and [129] to match road maps extracted from aerial photographs. Our graph definition
differs from theirs, where road intersections are nodes in the graph and two nodes are
connected by an edge if a road appears between two intersections. Such a graph definition

4Our framework is general enough to incorporate other neighborhood definitions. Please refer to
Section 5.6 for a definition, which is robust under nonuniform scale changes for different parts of a
shape.
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is natural for a road map, but errors in road detection will change the graph structure. In
our case, given an arbitrary set of points, there is no such natural definition of connections
among points. Graph matching is widely used in many fields such as computer vision
and pattern recognition. There are various kinds of graph structures, and many different
metrics are available in the literature to evaluate a match between two graphs [130].
Our graph representation and the corresponding matching metric are derived from the
observation (or assumption) that nonrigid deformation will not change the neighborhood
of a point significantly.

5.2.1 Matching Matrix

We can represent the matching function f in (82) with a set of supplemental variables,
which can be organized as a matrix P with dimension (M + 1) × (N + 1).

P =











p11 · · · p1N p1,nil
...

...
...

pM1 · · · pMN pM,nil

pnil,1 · · · pnil,N 0











(83)

If point Tm in the template shape T is matched to point Dn in the deformed shape D,
then Pmn = 1; otherwise Pmn = 0. The last row and column of P represent the case that a
point may be matched to a dummy point. Matrix P satisfies the following normalization
conditions

N+1
∑

n=1

Pmn = 1 for m = 1, 2, · · · , M, (84)

M+1
∑

m=1

Pmn = 1 for n = 1, 2, · · · , N. (85)

Using matrix P , the objective function (82) can be written as

S(T,D, P ) = 2
M
∑

m=1

∑

i∈Nm

N
∑

n=1

∑

j∈Nn

PmnPij (86)

5.3 Searching for an Optimal Solution

Since Pmn ∈ {0, 1}, searching for an optimal P that maximizes S(T,D, P ) is a difficult
discrete combinatorial problem. In our approach, we use relaxation labeling to solve the
optimization problem, where the condition Pmn ∈ {0, 1} is relaxed as Pmn ∈ [0, 1] [121].
After relaxation, Pmn is a real number, and the problem is converted to a constrained
optimization problem with continuous variables.

5.3.1 Matching Initialization

The performance of relaxation labeling depends heavily on the initial value of the match-
ing probability matrix P . We need a good initial measure of the matching probabilities.
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(a) (b)

Figure 27: Shape context of a point. (a) Basic shape context. (b) Our rotation invariant
shape context. The point labeled with * is the mass center of the point set.

One option involves assigning an attribute, such as the color or intensity gradients of the
pixel, to a point if it is extracted as a pixel in an image [131]. We can then compute
the similarity between a pair of points, and convert it to a measure of the matching
probability. If a set of points is given without any additional information, the shape
context provides an effective way to compute the similarity between two points [24]. In
our approach, we use the shape context distance to initialize the point matching proba-
bilities. If other attributes of a point are available, they can be easily incorporated into
our framework.

To extract the shape context of a point, an array of bins is placed around the point,
as shown in Fig. 27a. The number of points inside each bin is calculated as the context
of this point. Therefore, the shape context of a point is a measure of the distribution
of other points relative to it. Bins that are uniform in log-polar space are used to make
the descriptor more sensitive to positions of nearby points than to those of points far
away. Five bins for the radius and 12 bins for the rotation angle are used throughout
our experiments. Consider two points, m in one shape, and n in the other shape. Their
shape contexts are hm(k) and hn(k), for k = 1, 2, . . . , K, respectively. Let Cmn denote
the cost of matching these two points. As shape contexts are distributions represented
as histograms, it is natural to use the χ2 test statistic [24]

Cmn =
1

2

K
∑

k=1

[hm(k) − hn(k)]2

hm(k) + hn(k)
(87)

The Gibbs distribution is widely used in statistical physics and image analysis to relate
the energy of a state to its probability [68]. Taking the cost Cmn as the energy of the
state that points m and n are matched, the probability of the match is

Pmn ∝ e−Cmn/Tinit (88)

Parameter Tinit is used to adjust the reliability of the initial probability measures, where
Tinit ∈ [0.05, 0.1] is appropriate according to our experiments. We set the probability
for a point matching to a dummy point, Pm,nil or Pnil,n, to 0.2. Experiments show that
our approach is not sensitive to this parameter. Fig. 28a shows the initial matching
probability matrix P of two shapes.

Obviously, shape context is translation invariant. Using bin arrays with an adaptive
size according to the mean point distance of a shape, the shape context is scale invariant
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(a) (b)

Figure 28: Point matching probability matrix P . The matching probabilities to a dummy
point are not shown. White represents a high probability. (a) Initial probabilities using
the shape context distance. (b) After 300 iterations of relaxation labeling updates.

too [24], but it is sensitive to large rotations. In some applications, rotation invariance is
required. Our graph representation is rotation invariant, so we need a rotation invariant
initialization scheme. A complete rotation invariant shape context was proposed using the
tangent direction at each point as the positive x-axis for the local coordinate system [24].
One drawback of this approach is that the tangent direction, defined for gray-scale images,
does not apply for binary images. Furthermore, if only the point set is given without
accessing the original image, we cannot estimate the tangent direction. Another drawback
is that as a first-order derivative operation, the estimate of the tangent direction is
sensitive to noise. Instead, in our approach, we use the mass center of a point set as a
reference point and use the direction from a point to the mass center as the positive x-axis
for the local coordinate system. Fig. 27b shows our rotation invariant shape context. If
there is zero mean white noise in point position measurements, after averaging, the effect
of noise to the mass center is reduced. Therefore, our approach is more robust than the
tangent direction based approach under noise.

5.3.2 Relaxation Labeling

Relaxation labeling was first proposed in a seminal paper by Rosenfeld et al. in the
mid-1970s [121]. The basic idea is to use iterated local context updates to achieve a
globally consistent result. The contextual constraints are expressed in the compatibility
function Rmn(i, j), which, in our case, measures the strength of compatibility between
Tm matching Dn and Ti matching Dj. The support function Smn measures the overall
support the match between points Tm and Dn receives from its neighbors.

Smn =
∑

i∈Nm

∑

j∈Nn

Rmn(i, j)Pij (89)
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The original updating rule is5

Pmn :=
PmnSmn

∑N
j=1 PmjSmj

. (90)

The denominator enforces the normalization constraint. Traditionally, only the one-way
normalization constraint, Eq. (84), is enforced in relaxation labeling.

In the original paper, Smn is defined heuristically. Although with ad hoc heuristic
arguments, a variety papers later reported on the practical usefulness of the algorithm
(see [132] for a review and an extensive bibliography). The success in real applications
and the heuristic flavor of the algorithm motivated investigators to establish a theoretic
foundation. There are two approaches. Some have tried to set the labeling problem
within a probabilistic framework using Bayesian analysis [128,133]. The Bayesian theory
can explain only one iteration of the relaxation process. An alternative explicitly defines
some quantitative measure of consistency to be maximized, then formulates the labeling
problem as one of optimization [134,135]. Projected gradient methods are often used to
optimize the objective function. In these theories, the support function Smn is defined
as the derivative of the objective function with respect to Pmn [135]. The updating rule
of the projected gradient methods is

P := P + γQ(S) (91)

where γ is the updating step and S is a matrix composed of elements Smn. Q(S) is a
projection operation of S to limit the range of Pmn to [0, 1] and enforce normalization
constraints. In the case of boundary points (i.e., having at least one component of the
probabilities equal to zero or one), the projection operation is much more complicated
and the procedure becomes computationally expensive. Furthermore, the updating step
γ is difficult to tune. An increase in the objective function is guaranteed only when
infinitesimal steps are taken, and searching for the optimal step size in each iteration is
computationally expensive. Recently, Pelillo [136] showed that the original updating rule
in (90) does converge to a local minimum if 1) the objective function is a polynomial with
nonnegative coefficients, and 2) Smn is defined as a gradient of the objective function.
The advantages of this updating rule, compared with the projected gradient methods, are
1) computationally expensive projection operations are avoided, and 2) it is parameter
free. We tried several updating rules compared in [137] and found that the updating
formula of (90) is robust and achieves better results. With our objective function of (86),
Smn takes the form of

Smn = 4
∑

i∈Nm

∑

j∈Nn

Pij (92)

Since Smn ≥ 0, the constraint that Pmn ∈ [0, 1] is satisfied after normalization. Inter-
preted in the relaxation labeling theory, our compatibility function is Rmn(i, j) = 1 if a
pair of neighbors Tm and Ti are matched to a pair of neighbors Dn and Dj; otherwise
Rmn(i, j) = 0. We can easily show that our objective function corresponds to the average

5In the original paper, the support function S is defined in a heuristic way in the range of [−1, 1].
In order to satisfy P ≥ 0 after updating, 1 + S is used to substitute S in both the numerator and
denominator in the updating rule [121].
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local consistency measure of the Hummel-Zucker consistency theory [135]. According to
the consistency theory, each update step will increase the overall consistency of the sys-
tem. Each unambiguous consistent solution is a local attractor. Starting from a nearby
point, the relaxation labeling process will converge to it [135,136]. Although there is no
guarantee that the updating process will converge to an unambiguous solution starting
from an arbitrary initialization, our experiments show that most elements of matrix P
do converge to zero or one.

In previous applications of the relaxation labeling technique, a many-to-one match
is allowed [138–142]. Only a one-way normalization constraint, either (84) or (85), is
enforced. Unfortunately, in many applications, one-to-one match is desired. Projected
gradient methods may be modified to enforce one-to-one match. The projection opera-
tion, however, is computationally expensive, and it is unclear how to find a projection
satisfying two-way normalization constraints. In our approach, a different approach based
on alternated row and column normalizations of the matching probability matrix P is
used to enforce one-to-one match [25]. A nonnegative square matrix with each row and
column summing to one is called a doubly stochastic matrix. Sinkhorn [143] showed
that the iterative process of alternated row and column normalizations will convert a
matrix with positive elements to a doubly stochastic matrix. The conclusion can be ex-
tended to a non-square matrix with positive elements. We call a matrix where each row
and column (except the last row and column) sums one a generalized doubly stochastic
matrix. We can show that alternated row and column normalizations (except the last
row and column) of a matrix with positive elements will result in a generalized doubly
stochastic matrix. Please refer to the Appendix of this chapter for the proof. This tech-
nique was also used in the soft assignment point matching approach without proof [25].
Though relaxation labeling with one-way normalization constraint can be theoretically
well founded [136], it is not clear whether the updating process will converge to a local
optimum and increase the consistency after imposing the one-to-one matching constraint.
We found the updating process still converges through experiments, but we cannot prove
it theoretically.

Fig. 28a shows the initial value of the point matching probability matrix P of two
shapes. After each relaxation labeling update, we perform alternated row and column
normalizations to matrix P . Generally, a few rounds will bring a matrix close to a
generalized doubly stochastic matrix. After 300 iterations of relaxation labeling updates,
the ambiguity of matches decreases. As shown in Fig. 28b, most elements of the matrix
converge to zero or one.

After relaxation labeling updates, points with maximum matching probability less
than Pmin (Pmin = 0.95) are labeled as outliers by matching them to dummy points. The
matched point pairs are used to estimate the parameters of the affine or TPS deformation
model, and the estimated parameters are used to transform the template shape to bring
it closer to the deformed shape. In some application scenarios (e.g., the experiments
in Section 5.6.1), we may want to find as many matches as possible. Unfortunately,
the ratio of points matched to dummy points by the relaxation labeling updates cannot
be controlled directly. After several iterations of correspondence and transformation
estimations, two point sets may be close to each other. Therefore, in the last round, we
find the optimal one-to-one match by minimizing the summation of Euclidean distances
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from the transformed template shape to the deformed shape.

Dist =
M
∑

m=1

‖T ∗
m − Df(m)‖ (93)

where T ∗
m is a point from the template shape after TPS transformation. The optimal

match f̂ of (93) can be found using the Hungarian algorithm [126]. We emphasize that
the above process is necessary only to disable the automatic outlier rejection scheme of
the algorithm and find as many matches as possible between two point sets.

5.3.3 Relationship to Previous Work

One difference from the previous applications of relaxation labeling on point match-
ing [142] is that we use it to solve a constrained optimization problem so the relaxation
labeling process is guaranteed to converge to a local optimal solution [136]. In the previ-
ous work, relaxation labeling is used in an ad hoc way without an objective function to
be optimized, so no clear indication exists for the quality of the solution. Furthermore,
unlike previous work, we can enforce one-to-one matching in our approach if necessary.

The relaxation labeling method used in our approach is similar to the well-known
soft assignment technique [25, 120]. Both convert the discrete combinatorial optimiza-
tion problem to one with continuous variables by assigning a probability measure to a
match. The procedure is called relaxation or soft in these two techniques respectively.
Generally, deterministic annealing is used to solve the soft assignment problem. It be-
gins with a high temperature where the matching probabilities are uniform. By gradually
decreasing the temperature, the matching probabilities will converge to a local optimal
solution of the objective function. An appropriate choice of the initial temperature and
temperature reduction ratio is necessary to achieve good results [25]. On the contrary,
the relaxation labeling based approach is parameter free. Another advantage is that we
can easily incorporate a meaningful initialization in relaxation labeling. Since the distri-
bution of local optima is complex, a good initialization is crucial to achieve a good result.
Unfortunately, it is difficult to incorporate an initialization method into the deterministic
annealing framework. It is also a drawback of another continuous optimization technique
for graph matching proposed by Pelillo [144]. We tested the soft assignment based graph
matching method [120] and found the results were worse than the relaxation labeling
based approach.

5.4 Shape Deformation Models

It is difficult to achieve a good match for shapes under both rigid and nonrigid distortions
with a single-step approach. The strategy of iterated point correspondence and transfor-
mation estimations is widely used for nonrigid shape matching. In our approach, for the
first iteration, the affine transformation between two shapes is estimated and corrected.
Instead of using the least squares (LS) estimator to estimate parameters of the affine
transformation [24], we use a more robust least median squares (LMS) estimator. In
the following iterations, the thin plate spline (TPS) deformation model is exploited to
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bring two shapes closer. Our approach is similar to [24] except that a more robust LMS
estimator is used to estimate the affine transformation, instead of the LS estimator.

5.4.1 Affine Transformation Estimation Based on LMS

The LS estimator is widely used to estimate transformation parameters. Suppose point
(xi, yi) is matched to point (ui, vi), for i = 1, 2, · · · , n, the optimal parameters of the
affine transformation minimize the summation of squares of the regression errors.

Â, T̂ = arg min
A,T

n
∑

i=1

∥

∥

∥

∥

(

ui

vi

)

− A

(

xi

yi

)

− T

∥

∥

∥

∥

2

(94)

where A is a 2× 2 matrix representing the rotation and anisotropic scale changes, and T
is a translation vector. One advantage of the LS estimator is that closed-form solutions
are available [145]. It is, however, sensitive to outliers in matching [146]. The breakdown
point is often used to evaluate robustness of an estimator under outliers, which is defined
as the smallest proportion of observations that must be replaced by arbitrary values in
order to force the estimator to produce values arbitrarily far from the true values [147].
The breakdown point of the LS estimator is 0%. Furthermore, it is difficult to detect
outliers based on the regression residual errors since they may spread over all of the
points [146].

In general, the results of the first iteration of point matching may be noisy with
many errors, so a more robust estimator is required. Several robust regression methods
have been proposed in the statistics literature. Among them, the least median squares
(LMS) estimator achieves the highest possible break down point, 50% [146]. Instead of
minimizing the summation of squares of regression errors, the LMS estimator minimizes
the median of the regression errors.

Â, T̂ = arg min
A,T

median

{

∥

∥

∥

∥

(

ui

vi

)

− A

(

xi

yi

)

− T

∥

∥

∥

∥

2

for i = 1, 2, · · · , n
}

(95)

There are no closed-form solutions for (95). Normally, we randomly select a subset with
three matched pairs (which can determine an affine transformation) and calculate the
median of the regression errors using the estimated parameters. Iterating the random
selection procedure, an optimal solution of (95) can be achieved. Suppose there are n
matched pairs and about 50% of them are wrong. In the worse case, we must select at

least

(

n
3

)

−
(

n/2
3

)

+1 different subsets to ensure at least one subset without outliers

is selected. This is too pessimistic. In real applications, we only need to examine a small
number of subsets. After examining k subsets, the probability of having at least one

good subset is 1−
[

1 −
(

n/2
3

)

/

(

n
3

)]k

(assuming sampling with replacement). For

example, let n = 200, the probability of getting at least one good subset in 50 random
selections is 99.8%. The LMS estimator can be used to estimate the affine transforma-
tion without knowing the correspondence between two point sets [148]. Without rough
correspondence, a large number of subsets need to be examined.
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5.4.2 TPS Deformation Model

The TPS model is often used for representing flexible coordinate transformations because
it has a physical explanation and closed-form solutions in both transformation and pa-
rameter estimation [124]. It has been used in nonrigid shape matching in [24] and [25].
Two TPS models are used for the 2-D coordinate transformation. Suppose point (xi, yi)
is matched to (ui, vi) for i = 1, 2, · · · , n, let zi = f(xi, yi) be the target function value at
location (xi, yi), we set zi equal to ui and vi in turn to obtain one continuous transfor-
mation for each coordinate. The TPS interpolant f(x, y) minimizes the bending energy

If =

∫ ∫

R2

(

∂2f

∂x2

)2

+ 2

(

∂2f

∂x∂y

)2

+

(

∂2f

∂y2

)2

dxdy (96)

and has the solution of the form

f(x, y) = a1 + axx + ayy +
n
∑

i=1

wiU(‖(xi, yi) − (x, y)‖) (97)

where U(r) is the kernel function, taking the form of U(r) = r2logr2. The parameters of
the TPS models w and a are the solution of the following linear equation

[

K P
P T 0

] [

w
a

]

=

[

z
0

]

(98)

where Kij = U(‖(xi, yi) − (xj, yj)‖), the ith row of P is (1, xi, yi), w and z are column
vectors formed from wi and zi respectively, and a is the column vector with elements
a1, ax, and ay.

If errors appear in the matching results, we use regularization to trade off between
exact interpolation and minimizing the bending energy as follows.

Hf =
n
∑

i=1

[zi − f(xi, yi)]
2 + λIf (99)

where λ is the regularization parameter, controlling the amount of smoothing. The
regularized TPS can be solved by replacing K in (98) with K + λI, where I is the n× n
identity matrix [149,150]. We set λ = 1 in the following experiments.

5.5 Summary of Our Approach

Following is a brief summary of our approach.

Input: Two point sets, T1, T2, . . . , TM from the template shape T , and D1, D2, . . . , DN

from the deformed shape D.
Output: The correspondence between two point sets.

1. Set the transformed template shape T ∗ as T .

2. Set iteration number to one.
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3. Calculate the shape context for each point in T ∗ and D, and use (87) to calculate
the distance between each point pair T ∗

m and Dn.

4. Use (88) to initialize the matching probability matrix P and convert it to a gener-
alized doubly stochastic matrix by alternated row and column normalizations.

5. Use (90) to update the matching probability matrix R (R = 300) times. After each
update, convert matrix P to a generalized doubly stochastic matrix.

6. If the iteration number is one, use LMS to estimate the affine transformation be-
tween T and D.

7. Otherwise, use (98) to estimate parameters of the TPS deformation model between
T and D.

8. Transform template point set T to T ∗ using the estimated deformation parameters.

9. Increase the iteration number by one. If the iteration number is less than Imax

(Imax = 10), go to step 3.

Suppose both shapes have N points, the computation cost of shape context distances
is in the order of O(N2). Relaxation labeling updates will take O(N2) time. The compu-
tational complexity of the algorithm may be largely dependent on the implementation of
the spline deformation, which can be O(N3) in the worst case. With our un-optimized
C++ implementation, matching two shapes (each with 100 points) takes about 1.6 sec-
onds on a PC with a 2.8 GHZ CPU.

5.6 Experiments

In this section, we show our approach preserves sequential ordering of points (a degener-
ated neighborhood structure) on open curves and closed contours during matching. We
also test our approach in matching real handwriting samples. We then quantitatively
compare it with two state-of-the-art algorithms for robustness under deformation, noise
in point locations, outliers, occlusion, and rotation.

5.6.1 Some Examples

We have tested our algorithm on the samples used in [25] and compared our results with
two other algorithms: shape context [24] and TPS-RPM [25]. In these examples, the
template and deformed shapes have the same number of points. To achieve a direct and
fair comparison, we prefer to match as many point pairs as possible without rejection.
The shape context algorithm can achieve this by setting the outlier ratio to zero. The
TPS-RPM algorithm and our relaxation labeling based approach may reject some points
as outliers by matching them to a dummy point. Unfortunately, there are no parameters
available in either algorithm to adjust the ratio of rejected points explicitly. In this
experiment, after point matching and shape transformation are finished, we use the
approach discussed in Section 5.3.2 to minimize the summation of Euclidean distances
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Our Approach

Shape Context

TPS-RPM

Figure 29: Point matching results on open curves (the left column) and closed contours
(the middle and right columns). Top row: our approach. Middle row: the shape context
algorithm. Bottom row: the TPS-RPM algorithm.

between the transformed template point set and the deformed point set (see, Equation
(93)).

Fig. 29 shows the point matching results of three algorithms on a pair of open curves
and two pairs of closed contours. As shown in the left column, all three algorithms achieve
good results for the pair of open curves even though the deformation is large. Neighboring
points may swap their matches in TPS-RPM. For the first pair of closed contours, all
algorithms achieve reasonable results, but the shape context algorithm introduces a few
mismatches as shown in the middle column of Fig. 29. Since the rotation between
two shapes is large for the second pair of closed contours, the rotation invariance shape
context is used for initialization in our approach and the shape context algorithm. Both
our approach and TPS-RPM achieve good results and preserve the sequential ordering
of points. The result of the shape context algorithm is not as good: neighboring points
in one shape may be matched to points far apart in the other shape.

We also test our algorithm for handwriting matching. Figs. 30a and b show two
samples of handwritten initials from the same person. We notice the structural change
for handwriting is large: the characters overlap each other in the first sample, but they are
well separated in the second sample. We uniformly sample 200 points from the skeletons
of the handwriting, as shown in Figs. 30c and d. Fig. 30e shows the point matching
results using our approach. Points labeled with green color are outliers rejected by our
algorithm. On the D’s, most points are assigned with correct correspondence. The
touching parts of the S are assigned with low matching probabilities, therefore rejected
as outliers. More examples of handwriting matching are shown in Fig. 31.

Our approach is general enough to incorporate other neighborhood definitions. In
this experiment, we use a neighborhood definition which is robust when different parts of
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(a) (b)

(c) (d)

(e)

Figure 30: Handwriting matching. (a) and (b) two handwritten initials from the same
person. (c) and (d) the point sets (each with 200 points) sampled from the skeletons of
(a) and (b), respectively. (e) Point matching results using our approach.

(a) (b) (c)

Figure 31: More examples of handwriting matching using our approach.
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Figure 32: A neighborhood definition which is robust under large nonuniform scale
changes for different parts of a shape. (a) Point sets of the template (o) and deformed
(+) shapes. (b) Template graph with 210 edges. (c) Deformed graph with 196 edges.
Among them, 178 (91%) edges also present in the template graph. (d) Point matching
result.

a shape have significantly different scales. For two points in a shape, they are neighbors
if and only if they are both in each other’s top Eave nearest points. This neighborhood
relationship is still symmetric and scale invariant. A fish shape is used to synthesize test
samples. First, we applied a moderate amount of nonrigid deformation to the template
shape, and then enlarged the fish tail. Fig. 32b and c show the graphs of the template
and deformed shapes when Eave = 5 and the fish tail is enlarged to four times of the
original size. This neighborhood definition is robust: 91% of the edges in the deformed
graph have a correspondence in the template graph, and a good point match is achieved
as shown in Fig. 32d.

5.6.2 Quantitative Evaluation

Synthetic data is easy to obtain and can be designed to test specific aspects of an algo-
rithm. We test our algorithm on the same synthesized data as in [25] and [24]. Three
sets of data are designed to measure the robustness of an algorithm under deformation,
noise in point locations, and outliers. In each test, the template point set is subjected
to one of the above distortions to create a target point set (for the latter two test sets,
a moderate amount of deformation is present). Two shapes (a fish and a Chinese char-
acter) are used, and 100 samples are generated for each degradation level. We then
run our algorithm to find the correspondence between these two sets of points and use
the estimated correspondence to warp the template shape. The accuracy of the match is
quantified as the average Euclidean distance between a point in the warped template and
the corresponding point in the target. Alternative evaluation metrics are possible (e.g.,
the number of correctly matched point pairs), but in order to compare our results directly
with two other algorithms, we use the same evaluation metric as in [25] and [24]. Fig.
33 shows several examples from the synthesized data sets, and Fig. 34 demonstrates the
quantitative evaluation results. Since the new neighborhood definition presented above
is not robust to outliers, the original version is used throughout this experiment. Our
algorithm performs best on the deformation and noise sets. For the outlier test set, how-
ever, no clear winner appears. The TPS-RPM algorithm outperforms our algorithm on
the Chinese character shape under large outlier ratios. Since points are spread out on the
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Figure 33: Chui-Rangarajan synthesized data sets. The template point sets are shown
in the first column. Column 2-4 show examples of target point sets for the deformation,
noise, and outlier tests respectively.

Chinese character shape, when a large number of outliers are present, the neighborhood
of a point changes significantly (as shown in the last column of Fig. 33), which violates
our assumption. Points on the fish shape are clustered, and the neighborhood of a point
is preserved well even with a large outlier ratio. Therefore, better results are achieved
by our algorithm on this shape.

Often present in real applications, occlusion is a challenge for many algorithms. In
the following experiments, we test the three algorithms under occlusion using synthesized
data. A moderate amount of nonlinear deformation is applied to a shape. We then
randomly select a point and remove it with some of its closest points. Six occlusion
levels are used: 0%, 10%, 20%, 30%, 40%, and 50%, and 100 samples are generated
for each level. The top row of Fig. 35 shows two synthesized samples. Quantitative
evaluation results are shown in the bottom row of Fig. 35. The TPS-RPM algorithm
treats all extra points as outliers, which are assumed to be independently distributed.
Since it does not model the distribution of occlusions well, the performance of TPS-RPM
deteriorates quickly. In our approach, the change of neighborhood structure is restricted
to points close to the occlusion. As shown in Fig. 35, our approach achieves the best
results for up to 40% occlusion. When the occlusion ratio is large, a shape is likely to be
broken into several parts and the neighborhood structure of almost all remaining points
may be changed. Therefore, when the occlusion ratio is 50%, the difference between our
approach and the shape context algorithm is small.

In some applications, rotation invariance is a critical property of a shape matching
algorithm. We test our algorithm under rotations using synthesized data of the same fish
and Chinese character shapes. A moderate amount of nonlinear deformation is applied
to a shape, and the ground-truthed correspondences are used to correct the rotation
introduced in the deformation. We then rotate the deformed shape. The probability of
selecting a clockwise or counterclockwise rotation is equal. Six rotations are used: 0, 30,
60, 90, 120, and 180 degrees. One hundred samples are generated for each rotation. The
top row of Fig. 36 shows two synthesized samples. At the first iteration, the rotation
invariant shape context distance is used to initialize the matching probabilities in our
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Figure 34: Comparison of our results (◦) with the TPS-RPM (∗) and shape context (�)
algorithms on the Chui-Rangarajan synthesized data sets. The error bars indicate the
standard deviation of the error over 100 random trials. Top row: the fish shape. Bottom
row: the Chinese character shape.

approach. The rotation between two shapes is corrected by the affine transformation in
the first iteration. After that, the normal shape context distance is used. Quantitative
evaluation results appear in the bottom row of Fig. 36. We can see that our method
is truly rotation invariant, and it consistently outperforms the shape context algorithm.
TPS-RPM, however, can only tolerate a rotations up to 60 degrees. The TPS-RPM algo-
rithm often fails to converge to a useful solution if rotation with any degree is allowed [25],
so a parameter λ2 is used to penalize a large rotation in the TPS-RPM algorithm. If λ2

is set to zero, its performance deteriorates significantly, much worse than our approach
at any level of rotation. Therefore, the default setting of λ2 (λ2 = 0.01) is used in this
comparison experiment for the TPS-RPM algorithm.

The variance of all algorithms is large. Therefore, a statistical analysis must be ap-
plied to ascertain whether the difference between these algorithms is significant. Mean
and variance can fully characterize only a Gaussian distribution. Fig. 37a and b show
the error histograms of the shape context algorithm and our approach. The histograms
are generated on 100 trials of the fish shape under the deformation level of 0.05. The
distributions differ significantly from a Gaussian distribution. Some challenging samples
deteriorate the performance and increase the variance, and the performance of two algo-
rithms on the same sample is not independent. Fig. 37c shows the histogram of paired
differences between two algorithms (the error of the shape context algorithm minus that
of our approach). The two algorithms have the same performance for about one third of
the test samples, and our approach outperforms the shape context algorithm on most of
the remaining samples.

Since the distribution of errors is not Gaussian, we use the Wilcoxon paired signed
rank test, which is powerful and distribution free [151]. In the Wilcoxon test, paired
differences are formed, and the absolute values are ranked. Where ties occur, the average
of the corresponding ranks is used. If the difference between two measures is zero, this
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Figure 35: Comparison of our results (◦) with the TPS-RPM (∗) and shape context (�)
algorithms under occlusion. Left column: the fish shape. Right column: the Chinese
character shape. Top row: synthesized samples. Bottom row: mean and variance of
errors.

−1.6 −1.4 −1.2 −1 −0.8 −0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0 30 60 90 120 180
−0.1

0

0.1

0.2

0.3

0.4

Degree of Rotation

E
rr

or

0 30 60 90 120 180
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Degree of Rotation

E
rr

or

Figure 36: Comparison of our results (◦) with the TPS-RPM (∗) and shape context (�)
algorithms under rotation. Left column: the fish shape. Right column: the Chinese
character shape. Top row: synthesized samples. Bottom row: mean and variance of
errors.
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Figure 37: Histogram of errors. (a) The shape context algorithm. (b) Our approach. (c)
Paired differences between two methods (the error of the shape context algorithm minus
that of our approach).

Table 10: Wilcoxon paired signed rank test. +, −, and = mean the former algorithm is
better, worse, or no difference than the latter, respectively.

Fish Chinese character
Ours vs. shape context Ours vs. TPS-RPM Ours vs. shape context Ours vs. TPS-RPM

Deformation = = + + + = = + + + + + + + + + + + + +

Noise = + + + + + + = + + + + + + + + = + + + + + + +

Outlier + + + + + + + + = = + + + + + + = = - -

Occlusion = + + + + = + + + + + = + + + + + + + + + + + +

Rotation + + + + + + = + + = = = - - + + + + = = + + + +

sample is excluded from the analysis. The sum of the ranks with a positive sign and the
sum of the ranks with a negative sign are calculated. The test statistic is the smaller of
these two sums. Table 10 shows the statistical analysis (with two-sided significance level
of 0.01) of the performance of our approach compared with two other algorithms. Here,
+ (−) means the improvement (deterioration) of our approach is statistically significant
compared with the other algorithm, and = means two algorithms do not differ significant.
The statistical test verifies that the improvement of our approach on most data sets is
significant.

5.7 Conclusions and Future Work

In this chapter, we have introduced the notion of a neighborhood structure for the general
point matching problem. We formulated point matching as an optimization problem to
preserve local neighborhood structures during matching. Extensive experiments were
presented to demonstrate the robustness of our approach. Compared with the other
two state-of-the-art algorithms, our approach performs as well or better under nonrigid
deformation, noise in point locations, outliers, occlusion, and rotation.

Large outlier or occlusion ratios (especially if the occlusion breaks a shape into several
isolated parts) can significantly change the local neighborhood structure. A combination
of different sources of degradation, such as large rotation, noise, and occlusion, also
presents a challenge, which should be addressed in our future research. In this work, the
relaxation labeling method is used to solve the constrained optimization problem. Only
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converging to a local optimum, it is by no means the best approach. We are testing other
optimization methods such as simulated annealing, genetic algorithms, and graduated
nonconvexity methods. Our graph matching formulation is applicable for both 2-D and
3-D shapes. Using the shape context distance for initialization, we only demonstrate it
on 2-D shapes, since the original shape context is defined only for 2-D point sets. We
will test the effectiveness of our approach for 3-D shape matching by extending the shape
context to 3-D point sets.

A reference C++ implementation of our approach is available under the terms of the
GNU General Public License (GPL) at http://www.enee.umd.edu/~zhengyf/PointMatching.
htm.
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Appendix

Sinkhorn showed that iterated alternative row and column normalization will convert an
N×N matrix with positive elements to a doubly stochastic matrix [143]. In our relaxation
labeling approach, we perform iterated alternative row and column normalization (except
the last row and column) to a non-square K × N (K 6= N) matrix A. This appendix
demonstrates this approach is mathematically sound: the process will converge to a
unique matrix TA, such that each row and column of TA sums one (except the last row
and column). The proof in this appendix adheres to Sinkhorn’s approach. In [143], several
important steps are skipped and a few typographical errors exist. In this appendix, more
cases are discussed to generalize Sinkhorn’s conclusion. First, we give a formal definition
of our generalized doubly stochastic matrix..

DEFINITION 1. A K ×N matrix A is called a generalized doubly stochastic matrix
if

K
∑

i=1

aij = 1 for j = 1, 2, . . . , N − 1 (100)

N
∑

j=1

aij = 1 for i = 1, 2, . . . , K − 1 (101)

The operation of row normalization can be represented as a left multiplication of A
with a diagonal matrix, and the operation of column normalization can be represented
as a right multiplication of A with another diagonal matrix. Multiple row (column)
normalization matrices can be combined as D1 (D2). Therefore, the overall iterated row
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and column normalization can be represented as TA = D1AD2. The following theorem
establishes the uniqueness of such a representation.

Theorem 1 To a given strictly positive K × N matrix A there corresponds exactly one
generalized doubly stochastic matrix TA which can be expressed in the form TA = D1AD2

where D1 and D2 are diagonal matrices with positive diagonals. D1 = diag{d11, d12, . . . , d1,K−1, 1}
and D2 = diag{d21, d22, . . . , d2,N−1, 1}. The matrices D1 and D2 are unique.

Proof: Suppose there exist two different pairs of diagonal matrices D1, D2 and C1,
C2 such that P = C1AC2 and Q = D1AD2 are both generalized doubly stochastic.
Then, we can write Q as Q = D1C

−1
1 PC−1

2 D2. Let E = D1C
−1
1 and F = C−1

2 D2, then
Q = EPF . Suppose E = diag{e1, e2, . . . , eK−1, 1} and F = diag{f1, f2, . . . , fN−1, 1}, Q
can be expanded as

Q =















e1f1P11 e1f2P12 . . . e1fN−1P1,N−1 e1P1N

e2f1P21 e2f2P22 . . . e2fN−1P2,N−1 e2P2N
...

...
...

...
...

eK−1f1PK−1,1 eK−1f2PK−1,2 . . . eK−1fN−1PK−1,N−1 eK−1PK−1,N

f1PK1 f2PK2 . . . fN−1PK,N−1 PK,N















(102)

The summation of the ith row of Q equals 1, for 1 ≤ i ≤ K − 1.

ei(f1Pi1 + f2Pi2 + . . . + fN−1Pi,N−1 + PiN) = 1 (103)

Since
∑N

j=1 Pij = 1 and Pij > 0, 1/ei is a convex combination of {fj, 1}. Therefore,

min
j
{1, fj} ≤ 1

ei

≤ max
j

{1, fj} for i = 1, 2, . . . , K − 1 (104)

Similarly, we can get

min
i
{1, ei} ≤ 1

fj

≤ max
i

{1, ei} for j = 1, 2, . . . , N − 1 (105)

There are three cases: 1) maxi ei ≤ 1; 2) mini ei ≥ 1; and 3) mini ei ≤ 1 ≤ maxi ei.
Let’s discuss the first case that maxi ei ≤ 1. Using the second inequality in Eq. (105),
we get fj ≥ 1. Then second inequality in Eq. (104) becomes 1 ≤ ei maxj fj. It follows
that

1 ≤ min
i

ei max
j

fj (106)

Similarly, the first inequality in Eq. (105) becomes fj mini ei ≤ 1. Therefore,

min
i

ei max
j

fj ≤ 1. (107)

Combining the above two inequalities, we get

min
i

ei max
j

fj = 1 (108)
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Let consider the summation of the row of Q corresponding to the minimum ei. Sup-
pose e1 = mini ei

1 = e1(f1P11 + f2P12 + . . . + fN−1P1,N−1 + P1N)

≤ e1[max
j

fj(P11 + P12 + . . . + P1,N−1) + P1N ]

≤ e1 max
j

fj(P11 + P12 + . . . + P1N)

≤ e1 max
j

fj

= 1 (109)

The equality holds if and only if f1 = f2 = · · · = fN−1 = 1. And considering the column
with the maximum fj, we get e1 = e2 = · · · = eK−1 = 1.

For the second case, mini ei ≥ 1, it is easy to verify that

max
i

ei min
j

fj = 1 (110)

And for the last case, mini ei ≤ 1 ≤ maxi ei, we can get both equalities (108) and (110).
Following similar arguments, we can show that the equalities f1 = f2 = · · · = fN−1 = 1
and e1 = e2 = · · · = eK−1 = 1 hold for all cases. It follows that D1 = C1, D2 = C2, and
P = Q. That means such factorization is unique, and the resulted generalized doubly
stochastic matrix is unique too.

Theorem 2 The iterative process of alternately normalizing the rows and columns (ex-
cept the last row and column) of a strictly positive K × N matrix is convergent to a
strictly positive generalized doubly stochastic matrix.

Proof: The iteration produces a sequence of positive matrices which alternately have row
(except the last row) and column (except the last column) sums one. We will show that
the two subsequences which are composed respectively of the matrices with row sums one
and the matrices with column sums one each converge to a positive generalized doubly
stochastic limit of the form D1AD2. The uniqueness part of Theorem 1 guarantees two
limits are the same. In the following, we only show the convergence of the subsequence
of the matrices with column sums one. The convergence of the other subsequence is easy
to show following similar arguments.

Let {An} = {(anij)} be the sequence with column sums one (except the last column),
and An have row sums λn1, λn2, . . . , λn,K−1. After row normalization, we calculate the
column sums δnj (for 1 ≤ j ≤ N − 1)

δnj =
K−1
∑

i=1

anij/λnj + anKj (111)

Since
∑K

i=1 anij = 1, δnj is a convex combination of {1/λnj, 1}. It follows

1

max{1, λn(M)} ≤ δnj ≤
1

min{1, λn(m)} for j = 1, 2, . . . , N − 1 (112)
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where the m and M respectively label minimal and maximal quantities relative to a given
An. Similarly, since λn+1,i of matrix An+1 is a convex combination of {1/δnj, 1}, it follows
that

1

max{1, δn(M)} ≤ λn+1,i ≤
1

min{1, δn(m)} for i = 1, 2, . . . , K − 1 (113)

There are three cases: 1) λn(m) ≥ 1; 2) λn(M) ≤ 1; and 3) λn(m) ≤ 1 ≤ λn(M). For
the first case λn(m) ≥ 1, from Eq. (112) we get 1/λn(M) ≤ δnj ≤ 1. Using Eq. (113),
we get

1 ≤ λn+1,i ≤ λn(M) (114)

Therefore,

case 1: λn(m) ≥ 1 ⇒ 1 ≤ λn+1(m) and 1 ≤ λn+1(M) ≤ λn(M) (115)

Similarly

case 2: λn(M) ≤ 1 ⇒ λn+1(M) ≤ 1 and λn(m) ≤ λn+1(m) ≤ 1(116)

case 3: λn(m) ≤ 1 ≤ λn(M) ⇒ λn(m) ≤ λn+1(m) ≤ 1 ≤ λn+1(M) ≤ λn(M)(117)

In the following, we want to show that for case 1 and 3, λn(M) left converges to 1 (from
a value larger than 1); and for case 2 and 3, λn(m) right converges to 1 (from a value
smaller than 1). If the convergence holds, using Eq. (112), it follows that δnj converges
to 1 too. Therefore, the sequence of matrices An converges to a generalized doubly
stochastic matrix.

Let an be the minimal element of An (excluding the last row and column), we want
to show that an > 0 for all n. Starting from A1 = {a1ij}, we can combine all row
normalizations of row i (i < K) up to nth iteration as xni = [λ1iλ2i · · ·λni]

−1. For the
last row xnK = 1. All column normalization of column j (j < n) up to nth iteration is
combined as ynj = [δ1jδ2j · · · δnj]

−1. For the last column ynN = 1. Since summation of

column j of An equals one,
∑K

i=1 xniaijynj = 1, for j = 1, 2, . . . , N − 1, we get

ynj =
1

∑

i a1ijxni

≤ 1

a1ijxni

≤ 1

a1xni

(118)

In particular ynj ≤ 1/[a1xn(M)]. Since

N
∑

j=1

xnia1ijynj = λn+1,i (119)

As we can see from (115), (116) and (117), for all three cases, λn+1,i is bounded away
from 0. Let λn+1,i ≥ λ, it follows that

xni ≥
λ

∑

j a1ijynj

≥ a1λxn(M)/N. (120)

The last inequality is derived from the fact that a1ij ≤ 1. Also ynj = 1/
∑

i a1ijxni ≥
1/[Nxn(M)] and we see that an+1,i,j = xnia1ijynj ≥ a1λ/N2 = a > 0. Therefore, an > 0
for all n.
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For case 1 and 3, we want to show that λn(M) right converge to 1. It is clear that
λn(M) → 1 + c where c ≥ 0. For convenience set λn(M) = 1 + cn.

δnj =
K−1
∑

i=1

anij

λni

+ anKj =
∑

i:λni≤1

anij

λni

+
∑

i:λni>1

anij

λni

+ anKj

≥
∑

i:λni≤1

anij +
1

1 + cn

∑

i:λni>1

anij +
1

1 + cn

anKj =

∑K
i=1 anij + cn

∑

i:λni>1 anij

1 + cn

(121)

Using the fact that
∑

i anij = 1,

δnj ≥
1 + cn

∑

i:λni>1 anij

1 + cn

≥ 1 + cnan

1 + cn

(122)

It follows that

λn+1,i =
N−1
∑

j=1

anij

λniδnj

+
aniN

λni

≤ 1 + cn

1 + cnan

N−1
∑

j=1

anij

λni

+
aniN

λni

(123)

Since 0 < an < 1, therefore (1 + cn)/(1 + cnan) > 1, thus

λn+1,i ≤
1 + cn

1 + cnan

(

N−1
∑

j=1

anij

λni

+
anNj

λni

)

(124)

Because
∑N

j=1 anij/λni = 1 (the row summation after row normalization), therefore,

λn+1,i ≤
1 + cn

1 + cnan

<
1 + cn

1 + cna
(125)

The above inequality holds for all i, particularly,

1 + c ≤ λn+1(M) <
1 + cn

1 + cna
(126)

Since cn → c, the above condition holds if and only if c = 0. Therefore λn(M) → 1.
For case 2 and 3, we need to show that λn(m) left converge to 1. Let λn(m) → 1− d

where d ≥ 0, and λn(m) = 1 − dn, then

δnj =
∑

i:λni≤1

anij

λni

+
∑

i:λni>1

anij

λni

+ anMj ≤
1

1 − dn

∑

i:λni≤1

anij +
∑

i:λni>1

anij + anMj =
1 − dnan

1 − dn

(127)
And

1 − d ≥ λn+1(m) ≥ 1 − dn

1 − dnan

>
1 − dn

1 − dna
(128)

Since dn → d, the above condition holds if and only if d = 0. It follows λn(m) → 1. This
completes the proof.
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6 Handwriting Synthesis

6.1 Introduction

A statistical pattern recognition system depends heavily on the size and quality of the
training set. Although preparing samples of machine printed text is easy, doing so is ex-
pensive for handwriting. Synthesized data can be used as a supplement. In the previous
work, many handwriting synthesis approaches have been proposed to simulate the writ-
ing style of a person [152], or enlarge the training set for a recognition system [107,108].
They can be roughly categorized as perturbation-based, model-based, or example-based.
Perturbation-based methods need only one handwriting sample. New samples are gen-
erated by assigning random parameters to a deformation model, which is then used to
deform the sample [25,108]. However, without considering the deformation characteristics
of handwriting, unrealistic samples may be generated. Instead, model-based approaches
learn the deformation of handwriting and explicitly describe it as a distribution (the dis-
tribution is often called a model) [152,153]. After learning, handwriting synthesis is the
process of drawing new samples from the distribution. Although theoretically founded,
model-based approaches have some drawbacks in real applications: handwriting models
are often complex, and many samples are demanded for model training. Example-based
approaches use two handwriting samples and generate new samples with shapes similar
to both inputs [107]. Compared with model-based approaches, fewer samples are needed
because this approach does not need to learn the distribution of deformation. Both model-
based and example-based approaches need to perform handwriting matching, which is a
challenge because handwriting is a nonrigid shape.

6.2 Our Approach

The key problem of handwriting synthesis involves generating samples that look natural.
Otherwise, arbitrarily synthesized samples cannot improve (if not deteriorate) the per-
formance of the system trained on them. Although handwriting samples vary greatly in
respect to size, rotation, and stroke width, shape is generally used to categorize them into
different classes. Since nonrigid deformation of handwriting is large, we argue that a syn-
thesis algorithm should learn the shape deformation characteristics from real handwriting
samples. It is reasonable to assume that the shape space of handwriting with the same
content (e.g., the handwriting samples of the letter ‘a’) is continuous. For characters with
several different writing glyphs, such as number ‘7,’ we may need to do clustering analysis
to segment the shape space into multiple continuous sub-spaces. Given two handwriting
samples close in the shape space, the interpolation between them is likely to lie inside the
shape space too (this is guaranteed if the shape space is convex). That means, given two
actual and similar handwriting samples, it is reasonable to assume a person may write
with a shape between them (i.e., with similar but less degree of deformation).

In this chapter, we propose an example-based handwriting synthesis approach using
two training samples. We use our handwriting matching algorithm to establish the cor-
respondence between two handwriting samples. After handwriting matching, we warp
one sample toward the other using the TPS deformation model. By adjusting the reg-
ularization parameter λ of the TPS deformation model (Equation (129)), we can adjust
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Figure 38: Handwriting synthesis. Two training samples and the point matching result
are shown on the top row. Synthesized samples: second row for our approach, third row
for [25], and forth row for [107].

the amount of non-rigid deformation.

Hf =
n
∑

i=1

[zi − f(xi, yi)]
2 + λIf (129)

Please refer to Section 5.4 for a detailed description of the regularization. The regular-
ization parameter λ is used in a different way compared to the shape matching in the
previous chapter. Here, we use it to adjust the amount of non-rigid deformation. It has
been shown that if λ = ∞, the deformation is the affine transformation. With a smaller
λ, the interpolated shape is closer to the target shape. On shape matching, however, it
is used to reduce the effect of outliers in the match estimate.

Among all previous work, the algorithm proposed by Mori et al. [107] is the most
similar to our approach. They use the well-known iterated closed point (ICP) algo-
rithm [111] to get the displacement vector of each pixel. A new sample is generated by
moving each pixel along its displacement vector. Compared with our approach, it has
two drawbacks: (1) the ICP algorithm is not robust under nonrigid deformation [25], and
(2) the displacement field is not continuous, so the synthesized sample may change the
topology.

6.3 Experiments

In this section, we apply our handwriting matching algorithm to handwriting synthesis
and compare it with two other algorithms [25, 107]. The top row of Fig. 38 shows two
handwriting samples and their point matching result. Under this match, we use TPS to
deform the first sample to synthesize new samples, as shown in the second row. From
left to right, λ takes the value of ∞, 10, 1, and 0.1, respectively. With the decrease
of the regularization parameter λ, the synthesized sample is closer to the second real
sample. The third row in Fig. 38 shows synthesized samples using a perturbation-based
approach [25]. With only one training sample, the deformation of synthesized samples is
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Figure 39: Handwriting synthesis with point matching errors presented. Two training
samples and the point matching result are shown on the top row. Synthesized samples:
second row for our approach, third row for [107].

random, and sometimes unnatural samples may be generated. The third row shows the
synthesized samples using the approach of [107]. Suppose point Ti is matched to point
Df(i), its displacement is di = Df(i) − Ti. For an un-matched point, the displacement
takes the value of its closest matched point. A new sample is synthesized by moving a
point along its displacement.

Si = Ti + ρdi (130)

If ρ = 0, the synthesized sample is the original template; and if ρ = 1, all matched
points will be moved to the target under any matching function. The last row of Fig.
38 shows several synthesized samples with ρ equals 0.2, 0.4, 0.6, and 0.8, respectively.
As shown in the figure, both example-based approaches can learn shape deformation
characteristics given good point matching results. The approach of [107], however, may
change the topology (the synthesized handwriting is broken into several parts) due to
the dis-continuity of the displacement field. This drawback becomes obvious when point
matching errors (which are un-avoidable in real applications) are present. The second
and third rows of Fig. 39 show synthesized samples using our approach and [107]. The
topology of samples synthesized by our approach is preserved, even under substantial
matching errors. Using the approach of [107], unrealistic samples are generated.

More examples on handwriting synthesis are shown in Fig. 40. The ordering of
samples is the same as Fig. 38. Samples with different slants (within the range of the
slant between two training samples) are generated using our approach.

6.4 Discussion and Future Work

In this chapter, we applied our handwriting matching algorithm to synthesize new train-
ing samples for handwriting recognition. Our approach automatically learns shape defor-
mation characteristics from training samples, generating more visually realistic samples.
Although it has been shown in several independent experiments that synthesized hand-
writing samples can improve a recognition system trained on them [107, 108], we will
perform more experiments to verify it in the future. The limitation of our approach is
that we assume the same character is written with similar shape though with some degree
of distortion. Due to difference in geological location, education, and culture, people may
write the same character with significantly different shapes. We may need to perform
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Figure 40: More examples on handwriting synthesis. Two training samples and the
point matching result are shown on the top row. Synthesized samples: second row for
our approach, third row for [25], and forth row for [107].

clustering analysis to separate the training samples into several clusters. Each cluster is
more homogeneous, so our approach can be applied.
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7 Handwriting Retrieval

7.1 Introduction

Handwriting not only conveys information by its content (what one writes), but also
contains unique characteristics of the writer (how one writes). People have produced
huge amounts of handwritten documents in history and continue to do so. With the
coming of the electronic document era, the traditional library faces the challenge of how to
make an enormous amount of handwritten historical documents accessible electronically.
Scanning documents into a computer is easy. However, without a searchable index, the
scanned images have little use. In one solution, optical character recognition (OCR)
can convert handwriting to text, then the traditional text-based retrieval techniques can
perform their tasks. However, the state-of-the-art techniques for handwriting recognition
are error prone. No reliable product is available to recognize unconstrained handwriting,
except for handwritten digits [3]. Recognition errors will significantly deteriorate the
performance of the traditional text-based techniques. Direct retrieval based on image,
without recognition, may achieve better results [154]. Another application of handwriting
retrieval is searching a specified signature in a set of documents. Handwriting recognition
has little use in this application because the signature’s character sequence has little or
no inherent importance. Instead, its unique characteristics are of more concern. In these
applications, the direct retrieval of handwriting in document images is desired.

The retrieval of character sequences is also called keyword spotting in the litera-
ture [155]. Two similar keyword spotting approaches based on the hidden Markov models
(HMM) were proposed in [155] and [156] for printed text in degraded document images,
where the results of OCR were not reliable. The training of HMMs needs a large set of
labeled samples, but only one or several handwriting instances may be available for query.
Several handwriting retrieval techniques, such as the dynamic time warping based ap-
proach [154] and the corner feature based approach [157], have been proposed. However,
these techniques are not robust under non-rigid deformation of handwriting.

Alternatively, we can consider handwriting as a shape. Shape presentation, analysis,
matching, and recognition is an active area in computer vision and widely studied [109,
110]. Recently, the shape context method proposed by Belongie et al. [24] has achieved
success in many shape recognition and retrieval applications. A shape is represented as a
set of points in this approach. A shape context is assigned to each point, which describes
the relative distribution of the other points in the shape. After defining the similarity
between two points based on their shape contexts, the Hungarian algorithm [126] searches
for the optimal match between the two point sets. Similarity measures, such as the shape
context distance and the thin plate spline (TPS) bending energy, are calculated with
the current estimate of the correspondence and used for shape recognition or retrieval.
Ling and Jacobs [158] improved the original shape context method by replacing the
Euclidean distance with the inner-distance, which is invariant for articulated shapes, in
the calculation of shape context. Though the discrimination power is improved by using
the inner-distance, the method is sensitive to structure change of a shape. As shown
in Fig. 43, a handwriting stroke is often broken. Two strokes may touch each other in
one sample, but well separated in another sample. Structure change is also a challenge
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for shock-graph based approaches [159, 160], where the connection of two points by a
stroke is utilized. On the contrary, by treating a shape as a set of isolated points, the
original shape context method is more robust under structure change. In many shape
retrieval approaches [158,161,162], a shape is often represented as a sequence of ordered
points sampled from its contour. This may apply for the retrieval of on-line handwriting
samples collected on a PDA or TablePC. However, for an off-line handwriting sample, it
is difficult to recover the temporal information [163]. Therefore, we cannot order points
to form a 1-D sequence reliably due to structure change of handwriting.

In this chapter, we test several variations of the original shape context method for
handwriting retrieval. The shape context method can be decomposed as two steps: shape
matching and shape retrieval. Each step has several alternative technical solutions, which
are tested in our experiments. To avoid confusion, we call these two steps of the original
method the shape context matching algorithm and the shape context retrieval algorithm,
respectively. As discussed in the previous chapter, the shape matching part of the shape
context algorithm is not robust. Two neighboring points in one shape may be matched
to two points far apart in the other shape. We proposed a new shape matching algorithm
in the previous chapter to preserve local neighborhood structures during matching. Ex-
periments show our new approach achieves much better shape matching results. In this
chapter, we replace the original shape matching method with the proposed one and test
it for handwriting retrieval. Experiments show that a slight improvement is achieved.
We propose a few new similarity measurements based on the point matching results to
further improve the retrieval accuracy. The performance with a single query is limited
due to noise and the large variations of handwriting. We propose a method to combine
retrieval results with multiple queries.

7.2 Our Handwriting Retrieval Method

In the original shape context method, a set of uniformly sampled points on the contour
is used to represent a shape, as contour is a general representation and a shape can be
recovered from its contour. However, a contour is affected by the stroke width, which
depends on the writing tools and scanning parameter settings. Instead, we use a skeleton,
which is widely used in handwriting recognition, to represent a handwriting sample.
There are two advantages of using a skeleton: 1) it is robust under the variation in stroke
width; 2) less points are demanded to represent handwriting. Suppose each shape is
represented with N points, the computation time is in the order of O(N3) for shape
matching and O(N2) for similarity calculation. With a small number of points, we can
significantly increase the retrieval speed. Fig. 41a shows the shape representation with
300 points sampled from the contour, and Fig. 41b shows the representation with 200
points from the skeleton. We can see that 200 points from the skeleton is as good as 300
points from the contour to represent a handwriting sample.

After point matching, two similarity measures were proposed in the original shape
context method [24] for shape recognition and retrieval. One is based on the shape
context distance (Dsc), and the other is the TPS bending energy (Dbe). Suppose there
are M points in the template shape T and N points in the deformed shape D. The
shape context distance between shapes T and D is the symmetric sum of shape context
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(a) (b)

Figure 41: Handwriting representation: contour vs. skeleton. (a) Representation with
300 points sampled from the contour. (b) Representation with 200 points sampled from
the skeleton.

matching costs over best matching points,

Dsc =
1

M

∑

t∈T

arg min
d∈D

C(T (t), d) +
1

N

∑

d∈D

arg min
t∈T

C(T (t), d), (131)

where T (.) denotes the estimated TPS shape transformation; C(., .) is the shape context
matching cost between two points. Consider two points, t in shape T , and d in the other
shape D. Their shape contexts are ht(k) and hd(k), for k = 1, 2, . . . , K, respectively.
C(t, d) is defined as

C(t, d) =
1

2

K
∑

k=1

[ht(k) − hd(k)]2

ht(k) + hd(k)
. (132)

The TPS bending energy represents the amount of deformation between two shapes
and can be used as a shape similarity measure. As discussed in the previous chapter,
two TPS models are used for 2-D coordinate transformation. Dbe is defined as the sum
of the bending energy of two TPS models.

Besides Dsc and Dbe proposed in the original shape context method, we can define
more similarity measures to improve the retrieval accuracy. The TPS bending energy
only measures the energy of deformation beyond an affine transformation. In other words,
the bending energy is zero for an affine transformation. An affine transformation can
be decomposed as translation, rotation, and anisotropic scales. According to Kendell’s
shape theory [164] [145, p. 1], shape is, “all the geometrical information that remains
when location, scale and rotational effects are filtered out from an object.” So, shape is
invariant up to the similarity transformation (translation, rotation, and isotropic scale).
The amount of anisotropic scales is a good measure of the similarity between two shapes.
6 Suppose the scales of the x and y coordinates are Sx and Sy, respectively. We can
estimate the scales from the affine transformation matrix based on the singular value
decomposition. A 2-D affine transformation can be represented as a 2 × 2 matrix A and
a 2 × 1 translation vector T

(

u
v

)

= A

(

x
y

)

+ T. (133)

6This similarity measure was implemented in the Matlab package of the shape context method dis-
tributed on-line. But its effectiveness in shape recognition and retrieval has not been tested and docu-
mented in the paper [24].
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Sx and Sy are the singular values of matrix A. The distance Daf is defined as

Daf = log

(

max(Sx, Sy)

min(Sx, Sy)

)

. (134)

If the scales are isotropic, Sx = Sy, then Daf = 0.
We propose another distance measure, Dre, based on the registration residual errors.

Suppose point ti in shape T is matched to point df(i) in shape D. Dre is defined as

Dre =

∑

i:f(i) 6=nil ||T (ti) − df(i)||
∑

i:f(i) 6=nil 1
, (135)

where ||.|| is the Euclidean distance. In calculating Dre, we remove those points matching
to a dummy point nil.

Our matching algorithm will automatically reject some points as outliers. If two
shapes are similar, the number of rejected points will be small, so the number of outliers
offers a measure of the similarity between two shapes. The distance measure Dou is
defined as the number of outliers rejected during matching.

In total, we have five similarity measures, which have different scales. The overall
similarity measure Dall is defined as the weighted Euclidean distance of all distance mea-
sures. Given a query, we calculate its distance measures to all samples in the database.
We, then, can calculate the variance of each measure. The overall similarity measure Dall

is define as

Dall =
Dsc

V ar(Dsc)
+

Dbe

V ar(Dbe)
+

Daf

V ar(Daf )
+

Dre

V ar(Dre)
+

Dou

V ar(Dou)
. (136)

Since the weights are calculated on-line, different queries may have different combination
weights. In general, we do not have many samples to train the weights for a retrieval
task, and the above scheme is by no means optimal. Commonly, user’s feedback is often
used to adjust the weights in the retrieval community. This process is called relevance
feedback, which may significantly increase the retrieval accuracy after a few iterations.

The retrieval performance with a single query instance is limited due to the noise and
the large variations of handwriting (as shown in Figs. 42b and 43). The performance of
a retrieval depends heavily on the sample used for query. It is often possible to have a
couple of handwritten samples from the same person available for retrieval. For example,
we can ask the person to write a sample several times, or we can select the correctly
returned samples from the first-round retrieval and use them with the original query
instance in the second-round retrieval. Suppose, multiple instances from the same class
q1, q2, . . . , qk are used as queries. The corresponding distances of a handwritten sample
in the collection to these queries are d1, d2, . . . , dk. We combine them into a final distance

d = f(d1, d2, . . . , dk). (137)

Using one instance for query, we can achieve a sorted list of all samples in the collection.
Using multiple instances, multiple sorted lists of the same collection can be achieved.
The problem of combining these sorted lists to get the final one is similar to the multiple
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classifier combination problem, which is an active research topic in pattern recognition.
Many techniques have been proposed. Currently we use a simple technique: using the
smallest distance as the combined distance measure

d = min{d1, d2, . . . , dk}. (138)

7.3 Experiments

In this section, we first present our retrieval evaluation metrics. The effects of different
shape representations, shape matching algorithms, and similarity measures are compared
in the task of handwritten initial retrieval. We also present an experiment for logo
retrieval.

7.3.1 Evaluation Metrics

Evaluation metrics for retrieval are well studied in the traditional information retrieval
literature. Generally, two set of metrics, precision and recall, are widely used.

Precision =
# Returned relevant samples

# Returned samples
(139)

Recall =
# Returned relevant samples

# Relevant samples in the database
(140)

Region of characteristic (ROC) curves, indicating the relationship between precision and
recall, can release the performance of a retrieval algorithm completely. Since comparing
ROC curves of two algorithms is complicated, sometimes, a metric with a scalar value is
preferred. R-Precision is such a metric. Suppose a total of M samples in the database,
and among them N samples are relevant for a query. The retrieval algorithm will return a
ranked list of all M samples. R-Precision is the precision of the first N retrieved samples
in the list.

R-Precision =
# Relevant samples in top N returned samples

N
(141)

R-Precision is used for evaluation in the following experiments.

7.3.2 Handwritten Initial Retrieval

To test the effectiveness of the proposed method for handwriting retrieval, we collected
a small dataset of handwritten initials. We had eight persons with each of them writing
40 sets of initials. Fig. 42a shows one sample from each person, and 42b shows several
samples from one person. As we can see, variations (besides rotation and scales) are large
for handwriting, and noise, such as underlines, would make things worse.

In the first experiment, we evaluate the effect of different shape representations on
retrieval accuracy. For a general shape, a contour is often use to represent a shape, then
a number of points are uniformly sampled from the contour. Handwriting is composed
of thin strokes, so skeleton representation may offer a better choice than contour. In this
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(a) (b)

Figure 42: Some samples from the handwritten initial data set. (a) One sample from
each person. (b) Several samples from one person.

experiment, we use the original shape context algorithm for experiments: the original
shape context matching method is used to search for the correspondence between two
point sets; Dsc and Dbe are used to measure the similarity between two shapes. The
number of sampled points is fixed as 200. For an exhaustively evaluation on the database,
each sample should be selected once for query. Supposing M samples in the database, the
number of shape comparisons is M×(M−1). In our case, it is 320×319 = 102, 080. Each
shape comparison may take about one second. Due to the speed, we randomly select 10%
of the samples as queries. It is sufficient to reveal the difference between different shape
representations. To remove any bias, the selected sample is removed from the database
for this query. The overall R-Precision is reported as the average of R-Precisions of
all queries. The overall R-Precision of the contour based representation is 69.4%. For
comparison, two skeleton extraction algorithms are implemented [165, 166]. The overall
R-Precision increases slightly to 70.5% using Dyer and Rosefled’s method [165], and
to 71.4% using Zhang and Suen’s method [166]. Since the latter skeleton extraction
algorithm achieves the best performance, we use it for the following experiments.

In this experiment, we test the effectiveness of our shape matching method. We re-
place the matching method with our approach presented in the last chapter, and use the
same similarity measures Dsc and Dbe. The same 10% randomly selected samples in the
previous experiment are used as queries. The overall R-Precision using our shape match-
ing approach is 72.3%. Out of our expectation, the improvement is slight compared to the
original overall R-Precision of 71.4%. Detailed analysis shows that our shape matching
approach decreases the average distances between shapes from the same category. This
verifies that better shape matching results are achieved by our approach. However, our
matching approach also decreases the average distances between shapes from different
categories. The conclusion of this experiment is that a better shape matching algorithm
does not necessarily increase the discrimination capability of a measure, which is defined
on the matching results.

In the following experiment, we compare the effectiveness of different similarity mea-
sures. Unlike the previous experiments, we make full use of the database. All samples
are used in turn for query. Since our shape matching algorithm is much slower than the
shape context matching algorithm, we use the original matching method. Table 11 shows
the experimental results. The most powerful similarity measure is the TPS bending en-
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Table 11: Query with different similarity measures.

Dsc Dbe Daf Dre Dou Dsc+Dbe Dall

Overall R-Precision 56.1% 60.9% 57.3% 50.1% 35.5% 71.2% 74.4%

Table 12: Query with multiple handwritten initial samples from the same person.

Number of instances One Two Three Four
Overall R-Precision 74.4% 83.4% 86.2% 88.1%

ergy (Dbe), followed by the affine transformation based measure (Daf ). This experiment
show that measures based on transformations (TPS for non-linear transformation and
affine for linear transformation) are more robust than other features. The remaining mea-
sures can be ordered according to the discrimination power as the shape context distance
(Dsc), the residual error in registration (Dre), and the outlier ratio (Dou). The outlier
ratio feature is significantly less effective than the others, although it still provides some
retrieval power. By combining Dbe and Dsc as in the original shape context method, the
overall R-Precision is 71.2%. If we combine all features, the overall R-Precision improves
to 74.4%, demonstrating that different features are complementary. Fig. 43 shows one
query example. Excluding the query itself from the database leaves 39 relevant samples.
Among them, nine are ranked outside the top 39 returned samples. The figure also shows
the missed samples and false alarms. Most false alarms rank low, just higher than the
border line.

Table 12 shows the retrieval accuracy using multiple instances from the same person.
We randomly select multiple instances from a person and remove them from the database.
Each instance is used to query the database. Eq. 138 is used to combine the overall
distance measures Dall of multiple queries. As we can see, using multiple instances
can significantly increase the performance. With more instances added, the overall R-
Precision increases steadily. When four instances are used, 88.1% overall R-Precision is
achieved.

7.3.3 Logo Retrieval

A logo is important to identify a document’s source. Generally, logos can be seen as rigid
shapes. However, some organizations make small adjustment to their logos periodically.
Logos from different departments under the same organization (such as a university or the
federal government) may contain a similar layout with a small variation to reflect their
identity. In this experiment, we consider the task of finding all documents containing a
specified logo given by a query. Since a logo is often embedded in a document, we need
to segment it from other document components. We use the automatic logo detection
algorithm developed by Dr. Drayer at Fort Meade, Maryland. The tobacco data set is
used for the experiment. In the data set, 546 documents contain visible logos, and the
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Query Instance

Missed samples

(45) (47) (103)

(115) (153) (158)

(177) (251) (255)
False alarms

(28) (30) (31)

(32) (34) (35)

(36) (37) (39)

Figure 43: Handwritten initial retrieval. The first row is the instance used for query.
The middle zone shows the missed samples, and the bottom zone shows the false alarms.
The rank for each sample is shown under the corresponding image.
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Query Instance

Missed samples due to segmentation errors

Missed samples due to variations in the logo design

Figure 44: Logo retrieval. The top row is the instance used for query. The following rows
show the missed logos in the top returned samples.

algorithm detected 350 of them. A logo is claimed to be detected if the major parts of the
logo are detected, so in many cases the so-called correct detection is not perfect. A small
part of a logo may be lost, and other components may be grouped into the detected logo.
We use these 350 detected logos for the experiment of logo retrieval. There are 23 logo
categories, and some may contain sub-categories (variations). The distribution of each
category is not even. About half of the logos, 179 instances, belong to one category. We
randomly selected one instance from this category as a query, as shown in the first row of
Fig. 44. Since skeleton representation is sensitive to noise for a general shape, we use 200
points uniformly sampled from the contour to represent a logo. All similarity measures
are used, and the overall distance measure Dall is used to rank the remaining 349 logos.
Thirty-three of the relevant logos rank outside the top 178, resulting in the corresponding
R-Precision of 81.5%. Fig. 44 shows several relevant logos that rank outside the top 178.
Most missed logos occur because of the segmentation errors. In some cases, the approach
may fail due to variations in the logo design, as shown in the last row of Fig. 44.

To fully evaluate the performance in logo retrieval, we use each instance in the col-
lection for query. Table 7.3.3 shows the overall R-Precision using different similarity
measures. The overall R-Precision is 67.9%. As demonstrated in the table, combining
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Table 13: Overall R-Precision for logo retrieval with different similarity measures.
Dsc Dbe Daf Dre Dou Dall

Overall R-Precision 53.8% 57.8% 54.6% 48.3% 30.3% 67.9%

different similarity measures can significantly improve the retrieval accuracy.

7.4 Summary and Future Work

Experiments show that shape context is effective for handwriting retrieval. Skeleton
representation is more suitable for handwriting than contour and improves the retrieval
performance. Our new shape matching method only slightly improves the retrieval ac-
curacy, since it simultaneously decreases the distance measures between two shapes from
both the same and different categories. Overall, the distinguishing power of a distance
measure only improves slightly using our matching method. Adding more similarity mea-
sures will improve the retrieval accuracy significantly. A more effective way to improve
the accuracy is to use multiple samples for query. When four instances are used for query,
the overall R-Precision increases from 74.4% to 88.1% in our handwritten initial retrieval
experiment.

Handwriting retrieval (non-rigid shape retrieval in general) is a difficult problem. In
this chapter, we presented only our preliminary efforts on this topic. Much work remains
for the future. We tried to combine our previous work on handwriting identification with
the handwriting retrieval proposed in this chapter into a complete system. However,
segmentation errors significantly deteriorated the overall retrieval performance. This is
still an open problem in computer vision and needs further investigation. Future research
may also look into the optimal combination scheme for different distance measures. Rel-
evance feedback is a solution, but the effectiveness of this approach needs to be verified
in the context of handwriting retrieval by experiments.
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8 Conclusions

8.1 Summary

Our work has centered around the ability to separate handwriting from other layers in
noisy documents. Following are our key contributions.

1. Many handwritten documents have rule lines as a background pattern. The lines
must be detected and removed before feeding the text to an optical character recog-
nition (OCR) engine. Severely broken rule lines present a great challenge for ex-
isting line detection algorithms. We proposed an HMM model to incorporate the
constraints among a set of parallel lines. Our method is fast and achieves both
a high accuracy and a low false alarm rate. It has been tested on a real Arabic
data set, and promising results were achieved. After line detection, line removal is
performed by line width thresholding.

2. For handwriting identification in noisy documents, we proposed a classification
based scheme. The input document is segmented at the word level. Several fea-
tures, including structures, Gabor filters, run-length histograms, crossing-count his-
tograms, and textures, are extracted for classification. The classification result is
reasonable, with a few mis-classifications due to the overlapping of different classes
in the feature space. Some other cues may refine the classification results. For
example, machine printed text, handwriting, and noise exhibit different patterns of
geometric relationships. Printed words often form horizontal (or vertical) text lines,
and noise blocks tend to overlap each other. The novelty of our approach involves
using the Markov random field (MRF) to model the geometric relationship among
neighboring blocks. Experiments show that MRF based post-processing is effective,
where almost half of the mis-classifications are corrected after post-processing.

3. The identified handwriting may be further analyzed. In this dissertation, we pro-
posed a novel point pattern based handwriting matching technique and applied
it for handwriting synthesis and retrieval. We studied handwriting matching in a
broader context of nonrigid shape matching. For nonrigid shapes, most neighboring
points cannot move independently under deformation due to physical constraints.
Therefore, though the absolute distance between two points may change signifi-
cantly, the neighborhood of a point is well preserved in general. Based on this
observation, we formulate point matching as a graph matching problem. Each
point is a node in the graph, and two nodes are connected by an edge if their Eu-
clidean distance is less than a threshold. The optimal match between two graphs is
the one that maximizes the number of matched edges. The shape context distance
is used to initialize the graph matching, followed by relaxation labeling for refine-
ment. Experiments demonstrate the effectiveness of our approach: it outperforms
the shape context and TPS-RPM algorithms under nonrigid deformation and noise
on a public data set.

4. The techniques proposed in this paper are not limited to the processing of handwrit-
ing documents. For example, our model-based line detection algorithm, proposed in
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Chapter 2, can extend straightforwardly for known form identification and registra-
tion. In Chapter 4, we separate different components into three layers, handwriting,
machine printed text, and noise. By separating noise, the layer of machine printed
text is much cleaner than the original noisy document, which facilitates further
processing, such as zone segmentation and OCR. Our approach for handwriting
matching, discussed in Chapter 5, is general enough to be applied to other point
pattern based nonrigid shape matching applications.

8.2 Future Work

Though promising results have been achieved on several key issues in processing of hand-
writing documents, many possible extensions for further improvement exist.

1. In Chapter 4, how to extend our handwriting identification method to cursive
scripts, such as Arabic, is under investigation. We found two observations used to
discriminate handwriting from machine printed text for English documents do not
work well for Arabic documents. (1) Handwriting is more cursive than machine
printed text in English documents. However, machine printed Arabic text is cur-
sive by nature. (2) People like to connect several neighboring characters during
writing. However, machine printed Arabic characters are often connected too. Pre-
liminary experiments on Arabic documents, using the same feature set proposed
in Chapter 4, resulted in a poor classification accuracy. One possible solution is to
design new features for Arabic documents. Alternatively, we can perform handwrit-
ing/machine printed text discrimination at a higher level than word blocks, such
as the text line level. Reliably extracting text lines from a heterogeneous and noisy
document is a challenging problem itself. I am collaborating with another PhD
student on this topic. Preliminary results are promising, but more experiments
are necessary. Another problem is that word level classification is still demanded
in real applications because short text lines may contain only one or two words.
How to combine the classification results at word and text line levels presents one
direction for future research.

2. For nonrigid shape matching in Chapter 5, large outlier or occlusion ratios (espe-
cially if the occlusion breaks a shape into several isolated parts) can significantly
change the local neighborhood structures. Combination of different sources of
degradation, such as large rotation, noise, and occlusion, also presents a challenge,
which should be addressed in future research. In this dissertation, the relaxation
labeling method is used to solve the constrained optimization problem. Converging
only to a local optimum, it is by no means the best approach.

3. In Chapter 7, our experiments on handwriting retrieval show that a better shape
matching method does not always result in a higher retrieval accuracy. Combin-
ing several robust similarity measures is more effective to improve the retrieval
accuracy. How to get the optimal combination weights for different measures is a
topic under investigation. Techniques in the literature of traditional information
retrieval, such as relevance feedback or clustering analysis, should be studied in
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the context of handwriting retrieval to test their effectiveness. Segmentation errors
will significantly deteriorate the overall retrieval performance. This is still an open
problem in computer vision and needs further investigation.
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